ترغب بنشر مسار تعليمي؟ اضغط هنا

The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the e lectron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.
By using highly time-resolved spectroscopy with an alternative {sigma}+/{sigma} - laser pulse modulation technique, we are able to measure the fast buildup and decay times of the dynamical nuclear spin polarization (DNSP) at 5 K for a single InAs qua ntum dot (QD) with positively charged exciton. It is shown that the nuclear dipole-dipole interaction can efficiently depolarize DNSP with a typical time constant of 500 {mu}s in the absence of external magnetic field. By using an external field of 8 mT to suppress the nuclear dipolar interaction, the decay time turns to be mainly induced by interaction with unpaired electron and extends to about 5 ms. In addition, it is found that the time constant of hole-induced depolarization of nuclear spin is about 112 ms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا