ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a novel statistic to probe the statistics of phases of Fourier modes in two-dimensions (2D) for weak lensing convergence field $kappa$. This statistic contains completely independent information compared to that contained in observed pow er spectrum. We compare our results against state-of-the-art numerical simulations as a function of source redshift and find good agreement with theoretical predictions. We show that our estimator can achieve better signal-to-noise compared to the commonly employed statistics known as the line correlation function (LCF). Being a two-point statistics, our estimator is also easy to implement in the presence of complicated noise and mask, and can also be generalised to higher-order. While applying this estimator for the study of lensed CMB maps, we show that it is important to include post-Born corrections in the study of statistics of phase.
We provide a systematic study of the position-dependent correlation function in weak lensing convergence maps and its relation to the squeezed limit of the three-point correlation function (3PCF) using state-of-the-art numerical simulations. We relat e the position-dependent correlation function to its harmonic counterpart, i.e., the position-dependent power spectrum or equivalently the integrated bispectrum. We use a recently proposed improved fitting function, BiHalofit, for the bispectrum to compute the theoretical predictions as a function of source redshifts. In addition to low redshift results ($z_s=1.0-2.0$) we also provide results for maps inferred from lensing of the cosmic microwave background, i.e., $z_s=1100$. We include a {em Euclid}-type realistic survey mask and noise. In agreement with the recent studies on the position-dependent power spectrum, we find that the results from simulations are consistent with the theoretical expectations when appropriate corrections are included.
We study the morphology of convergence maps by perturbatively reconstructing their Minkowski Functionals (MFs). We present a systematics study using a set of three generalised skew-spectra as a function of source redshift and smoothing angular scale. Using an approach based on pseudo-$S_{ell}$s (PSL) we show how these spectra will allow reconstruction of MFs in the presence of an arbitrary mask and inhomogeneous noise in an unbiased way. Our theoretical predictions are based on a recently introduced fitting function to the bispectrum. We compare our results against state-of-the art numerical simulations and find an excellent agreement. The reconstruction can be carried out in a controlled manner as a function of angular harmonics $ell$ and source redshift $z_s$ which allows for a greater handle on any possible sources of non-Gaussianity. Our method has the advantage of estimating the topology of convergence maps directly using shear data. We also study weak lensing convergence maps inferred from Cosmic Microwave Background (CMB) observations; and we find that, though less significant at low redshift, the post-Born corrections play an important role in any modelling of the non-Gaussianity of convergence maps at higher redshift. We also study the cross-correlations of estimates from different tomographic bins.
We introduce the skew-spectrum statistic for weak lensing convergence $kappa$ maps and test it against state-of-the-art high-resolution all-sky numerical simulations. We perform the analysis as a function of source redshift and smoothing angular sc ale for individual tomographic bins. We also analyse the cross-correlation between different tomographic bins. We compare the numerical results to fitting-functions used to model the bispectrum of the underlying density field as a function of redshift and scale. We derive a closed form expression for the skew-spectrum for gravity-induced secondary non-Gaussianity. We also compute the skew-spectrum for the projected $kappa$ inferred from Cosmic Microwave Background (CMB) studies. As opposed to the low redshift case we find the post-Born corrections to be important in the modelling of the skew-spectrum for such studies. We show how the presence of a mask and noise can be incorporated in the estimation of a skew-spectrum.
Recent studies have demonstrated that {em secondary} non-Gaussianity induced by gravity will be detected with a high signal-to-noise (S/N) by future and even by on-going weak lensing surveys. One way to characterise such non-Gaussianity is through th e detection of a non-zero three-point correlation function of the lensing convergence field, or of its harmonic transform, the bispectrum. A recent study analysed the properties of the squeezed configuration of the bispectrum, when two wavenumbers are much larger than the third one. We extend this work by estimating the amplitude of the (reduced) bispectrum in four generic configurations, i.e., {em squeezed, equilateral, isosceles} and {em folded}, and for four different source redshifts $z_s=0.5,1.0,1.5,2.0$, by using an ensemble of all-sky high-resolution simulations. We compare these results against theoretical predictions. We find that, while the theoretical expectations based on widely used fitting functions can predict the general trends of the reduced bispectra, a more accurate theoretical modelling will be required to analyse the next generation of all-sky weak lensing surveys. The disagreement is particularly pronounced in the squeezed limit.
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one o f the most promising probe of the {em missing baryons} in the Universe. We study the possibility of reconstructing it in three dimensions (3D), using future spectroscopic surveys such as the Euclid survey. By reconstructing a 3D template from galaxy density and peculiar velocity fields from spectroscopic surveys we cross-correlate the estimator against CMB maps. The resulting cross-correlation can help us to map out the kSZ contribution to CMB in 3D as a function of redshift thereby extending previous results which use tomographic reconstruction. This allows the separation of the late time effect from the contribution owing to reionization. By construction, it avoids contamination from foregrounds, primary CMB, tSZ effect as well as from star forming galaxies. Due to a high number density of galaxies the signal-to-noise (S/N) for such cross-correlational studies are higher, compared to the studies involving CMB power spectrum analysis. Using a spherical Bessel-Fourier (sFB) transform we introduce a pair of 3D power-spectra: ${cal C}^{parallel}_ell(k)$ and ${cal C}^{perp}_ell(k)$ that can be used for this purpose. We find that in a future spectroscopic survey with near all-sky coverage and a survey depth of $zapprox 1$, reconstruction of ${cal C}^{perp}_ell(k)$ can be achieved in a few radial wave bands $kapprox(0.01-0.5 h^{-1}rm Mpc)$ with a S/N of upto ${cal O}(10)$ for angular harmonics in the range $ell=(200-2000)$ (abrdiged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا