ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - D. Fadda 2010
We present ultra-deep mid-IR spectra of 48 infrared-luminous galaxies in the GOODS-South field obtained with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14 - 0.5 mJy at 2 4 um) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using PAH and Si absorption features. Only few of these galaxies (5% at z~1 and 12% at z~2) have their total infrared luminosity dominated by emission from AGN. The averaged mid-IR spectra of the z~1 LIRGs and of the z~2 ULIRGs are very similar to the averaged spectrum of local starbursts and HII-like ULIRGs, respectively. We find that 6.2um PAH equivalent widths reach a plateau of ~1 um for L(24 mu) < 1E11 L(sun). At higher luminosities, EW (6.2 mu) anti-correlates with L(24 um). Intriguingly, high-z ULIRGs and SMG lie above the local EW (6.2 um) - L(24 um) relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z~2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L(FIR)/L(1600A) ratios higher than those of starburst galaxies at a given UV slope. The ``IR excess (Daddi et al. 2007) is mostly due to strong 7.7 um PAH emission and under-estimation of UV dust extinction. On the basis of the AGN-powered L (6 um) continuum measured directly from the mid-IR spectra, we estimate an average intrinsic X-ray AGN luminosity of L(2-10 keV) = (0.1 +/- 0.6) 1E43 erg/s, a value substantially lower than the prediction by Daddi et al. (2007).
We use deep, five band (100-500um) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_FIR, of galaxies in the Bullet cluster (z=0.296), and a smaller background system (z=0.35) in the same field. Hers chel detects 23 Bullet cluster members with a total SFR_FIR = 144 +/- 14 M_sun yr^-1. On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFR_FIR (21 galaxies; 207 +/- 9 M_sun yr^-1). SFRs extrapolated from 24um flux via recent templates (SFR_24) agree well with SFR_FIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR_24 underestimates SFR_FIR due to a significant excess in observed S_100/S_24 (rest frame S_75/S_18) compared to templates of the same FIR luminosity.
We present an optical spectroscopic survey of 24 micron and 1.4 GHz sources, detected in the Spitzer Extragalactic First Look Survey (FLS), using the multi-fiber spectrograph, Hydra, on the WIYN telescope. We have obtained spectra for 772 sources, wi th flux densities above 0.15 mJy in the infrared, and 0.09 mJy in the radio. The redshifts measured in this survey are mostly in the range 0 < z < 0.4, with a distribution peaking at z = 0.2. Detailed spectral analysis of our sources reveals that the majority are emission-line star-forming galaxies, with star formation rates in the range 0.2-200 Msun/yr. The rates estimated from the H-alpha line fluxes are found to be on average consistent with those derived from the 1.4 GHz luminosities. For these star-forming systems, we find that the 24 micron and 1.4 GHz flux densities follow an infrared-radio correlation, that can be characterized by a value of q24 = 0.83, with a 1-sigma scatter of 0.31. Our WIYN/Hydra database of spectra complements nicely those obtained by the Sloan Digital Sky Survey, in the region at lower redshift, as well as the MMT/Hectospec survey of Papovich et al. (2006), and brings the redshift completeness to 70% for sources brighter than 2 mJy at 24 micron. Applying the classical 1/Vmax method, we derive new 24 micron and 1.4 GHz luminosity functions, using all known redshifts in the FLS. We find evidence for evolution in both the 1.4 GHz and 24 micron luminosity functions in the redshift range 0 < z < 1. The redshift catalog and spectra presented in this paper are available at the Spitzer FLS website.
37 - E. Egami , G. H. Rieke , D. Fadda 2006
We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_{IR}=4e11 L_sun) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Z3146 (z=0.29). The spectrum shows strong aromatic emission features, indicating that the domin ant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H2 gas mass (~1e10 M_sun) are 6 times larger than those of NGC 6240, the most H2-luminous galaxy at z <~ 0.1. Together with the large amount of cold H2 detected previously (~1e11 M_sun), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core.
265 - D. T. Frayer , D. Fadda , L. Yan 2005
We present Spitzer 70um and 160um observations of the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70um sample an d 49% of the 160um-selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z<0.5, while about 5% have infrared colors consistent with AGN. The observed infrared colors agree with the spectral energy distribution (SEDs) of local galaxies previously determined from IRAS and ISO data. The average 160um/70um color temperature for the dust is Td~= 30+/-5 K, and the average 70um/24um spectral index is alpha~= 2.4+/-0.4. The observed infrared to radio correlation varies with redshift as expected out to z~1 based on the SEDs of local galaxies. The xFLS number counts at 70um and 160um are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight modifications. Deeper 70um observations are needed to constrain the models, and redshifts for the faint sources are required to measure the evolution of the infrared luminosity function.
125 - Lin Yan , G. Helou , D. Fadda 2004
In this Letter, we present the initial characterization of extragalactic 24um sources in the Spitzer First Look Survey (FLS) by examining their counterparts at 8um and R-band. The color-color diagram of 24-to-8 vs. 24-to-0.7um is populated with 18,73 4 sources brighter than the 3sigma flux limit of 110uJy, over an area of 3.7sq.degrees. The 24-to-0.7um colors of these sources span almost 4 orders of magnitudes, while the 24-to-8um colors distribute at least over 2 orders of magnitudes. In addition to identifying ~30% of the total sample with infrared quiescent, mostly low redshift galaxies, we also found that: (1) 23% of the 24um sources (~1200/sq.degrees) have very red 24-to-8 and 24-to-0.7 colors and are probably infrared luminous starbursts with L(IR)>3x10^(11)Lsun at z>1. In particular, 13% of the sample (660/sq.degrees) are 24um detected only, with no detectable emission in either 8um or R-band. These sources are the candidates for being ULIRGs at z>2. (2) 2% of the sample (85/sq.degrees) have colors similar to dust reddened AGNs, like Mrk231 at z~0.6-3. (3) We anticipate that some of these sources with extremely red colors may be new types of sources, since they can not be modelled with any familiar type of spectral energy distribution. We find that 17% of the 24um sources have no detectable optical counterparts brighter than R limit of 25.5mag. Optical spectroscopy of these optical extremely faint 24um sources would be very difficult, and mid-infrared spectroscopy from the Spitzer would be critical for understanding their physical nature (Abridged).
We present the Spitzer MIPS 24 micron source counts in the Extragalactic First Look Survey main, verification and ELAIS-N1 fields. Spitzers increased sensitivity and efficiency in large areal coverage over previous infrared telescopes, coupled with t he enhanced sensitivity of the 24 micron band to sources at intermediate redshift, dramatically improve the quality and statistics of number counts in the mid-infrared. The First Look Survey observations cover areas of, respectively, 4.4, 0.26 and 0.015 sq.deg. and reach 3-sigma depths of 0.11, 0.08 and 0.03 mJy. The extragalactic counts derived for each survey agree remarkably well. The counts can be fitted by a super-Euclidean power law of index alpha=-2.9 from 0.2 to 0.9 mJy, with a flattening of the counts at fluxes fainter than 0.2 mJy. Comparison with infrared galaxy evolution models reveals a peaks displacement in the 24 micron counts. This is probably due to the detection of a new population of galaxies with redshift between 1 and 2, previously unseen in the 15 micron deep counts.
45 - Lin Yan , P. Choi , D. Fadda 2004
We carried out the direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) > 5.3mag and Ks < 20.2mag, using 24um data from the Spitzer Space Telescope. Combining deep 24um, Ks- and R-band data over an a rea of 64sq.arcmin in ELAIS N1, we find that 50%+-6% of our ERO sample have measurable 24um flux above the 3sigma flux limit of 40uJy. This flux limit corresponds to a SFR of 12Msun/yr at z~1. The 24um-detected EROs have 24-to-2.2 and 24-to-0.7um flux ratios consistent with infrared luminous, dusty sources at z>1, and an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z~1. The mean 24um flux (167uJy) of the 24um-detected ERO sample roughly corresponds to the total infrared luminosity of (3-10)x10^(11)Lsun at z=1-1.5, which is similar to that of local LIRGs and ULIGs. The corresponding SFR is ~(50-170)Msun/yr. If the time scale of this starbursting phase is on the order of 10^8yr as inferred for the local LIRGs and ULIGs, the lower limit on the masses of these 24um-detected EROs is (5-20)x10^9Msun. It is plausible that some of the starburst EROs are in the midst of violent transformation to become massive early type galaxies at the epoch of z ~ 1-2.
109 - D. Fadda 2000
We present the results of infrared observations of Abell 1689 which was observed with ISOCAM, at 6.7mic and 15mic, and ISOPHOT at 200mic. The cluster galaxies detected above a sensitivity limit of 0.15 mJy in the 6.7mic band, whose emission is mostly dominated by their stellar component, show optical colors similar to the overall cluster population and are gathered in the center of the cluster, following the distribution of the cluster early-types. In the 15mic band, above a sensitivity limit of 0.3 mJy, the galaxies spectroscopically confirmed to be cluster members are blue outliers of the cluster color-magnitude relation and become brighter going from the center to the outer parts of the cluster. We compare the 6.7mic and 15mic fluxes and the cumulative distributions of the B-[6.75] and B-[15] colors of the A1689 galaxies, above our 90% completeness limits of 0.2 and 0.4 mJy for 6.7mic and 15mic respectively, to the galaxies of two nearby clusters, Virgo and Coma, and to the field galaxies at the same redshift of the cluster. Although the B-[6.7] color distributions of the three clusters are compatible, we find a systematic excess of B-[15] color distribution for the galaxies located in Abell 1689 with respect to Coma or Virgo galaxies. This result proves the existence of a mid-infrared equivalent of the Butcher-Oemler effect measured in the optical. The comparison of 15mic flux and B-[15] color distributions of A1689 and field galaxies does not show strong differences between the population of starburst galaxies in the cluster and in the field.
We present the results of the five mid-IR 15 microns (12-18 microns LW3 band) ISOCAM Guaranteed Time Extragalactic Surveys performed in the regions of the Lockman Hole and Marano Field. The roughly 1000 sources detected, 600 of which have a flux abov e the 80 % completeness limit, guarantee a very high statistical significance for the integral and differential source counts from 0.1 mJy up to 5 mJy. By adding the ISOCAM surveys of the HDF-North and South (plus flanking fields) and the lensing cluster A2390 at low fluxes and IRAS at high fluxes, we cover four decades in flux from 50 microJy to 0.3 Jy. The slope of the differential counts is very steep (alpha =-3.0) in the flux range 0.4-4 mJy, hence much above the Euclidean expectation of alpha =-2.5. When compared with no-evolution models based on IRAS, our counts show a factor of 10 excess at 400 microJy, and a fast convergence, with alpha =-1.6 at lower fluxes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا