ترغب بنشر مسار تعليمي؟ اضغط هنا

Extragalactic Source Counts at 24 Microns in the Spitzer First Look Survey

119   0   0.0 ( 0 )
 نشر من قبل Francine Marleau
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the Spitzer MIPS 24 micron source counts in the Extragalactic First Look Survey main, verification and ELAIS-N1 fields. Spitzers increased sensitivity and efficiency in large areal coverage over previous infrared telescopes, coupled with the enhanced sensitivity of the 24 micron band to sources at intermediate redshift, dramatically improve the quality and statistics of number counts in the mid-infrared. The First Look Survey observations cover areas of, respectively, 4.4, 0.26 and 0.015 sq.deg. and reach 3-sigma depths of 0.11, 0.08 and 0.03 mJy. The extragalactic counts derived for each survey agree remarkably well. The counts can be fitted by a super-Euclidean power law of index alpha=-2.9 from 0.2 to 0.9 mJy, with a flattening of the counts at fluxes fainter than 0.2 mJy. Comparison with infrared galaxy evolution models reveals a peaks displacement in the 24 micron counts. This is probably due to the detection of a new population of galaxies with redshift between 1 and 2, previously unseen in the 15 micron deep counts.

قيم البحث

اقرأ أيضاً

We present the first galaxy counts at 18 microns using the Japanese AKARI satellites survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8 square degrees respectively. We describ e a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 percent completeness) of 0.15mJy and 0.3mJy for the NEP-Deep and NEP-Wide surveys respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4 mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24 microns. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150 microJy level we calculate that AKARI has resolved approximately 55 percent of the 18 micron cosmic infrared background relative to the predictions of contemporary source count models.
We have imaged a $sim$6 arcminute$^2$ region in the Bootes Deep Field using the 350 $mu$m-optimised second generation Submillimeter High Angular Resolution Camera (SHARC II), achieving a peak 1$sigma$ sensitivity of $sim$5 mJy. We detect three source s above 3$sigma$, and determine a spurious source detection rate of 1.09 in our maps. In the absence of $5sigma$ detections, we rely on deep 24 $mu$m and 20 cm imaging to deduce which sources are most likely to be genuine, giving two real sources. From this we derive an integral source count of 0.84$^{+1.39}_{-0.61}$ sources arcmin$^{-2}$ at $S>13$ mJy, which is consistent with 350 $mu$m source count models that have an IR-luminous galaxy population evolving with redshift. We use these constraints to consider the future for ground-based short-submillimetre surveys.
This paper presents galaxy source counts at 24 microns in the six Spitzer Wide-field InfraRed Extragalactic (SWIRE) fields. The source counts are compared to counts in other fields, and to model predictions that have been updated since the launch of Spitzer. This analysis confirms a very steep rise in the Euclidean-normalized differential number counts between 2 mJy and 0.3 mJy. Variations in the counts between fields show the effects of sample variance in the flux range 0.5-10 mJy, up to 100% larger than Poisson errors. Nonetheless, a shoulder in the normalized counts persists at around 3 mJy. The peak of the normalized counts at 0.3 mJy is higher and narrower than most models predict. In the ELAIS N1 field, the 24 micron data are combined with Spitzer-IRAC data and five-band optical imaging, and these bandmerged data are fit with photometric redshift templates. Above 1 mJy the counts are dominated by galaxies at z less than 0.3. By 300 microJy, about 25% are between z ~ 0.3-0.8, and a significant fraction are at z ~ 1.3-2. At low redshifts the counts are dominated by spirals, and starbursts rise in number density to outnumber the spirals contribution to the counts below 1 mJy.
435 - Casey Papovich 2004
Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 micron imaging from Spitzer surveys, which include approximately 50, 000 sources to an 80% completeness of 60 uJy. The 24 micron counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 - 4 mJy, and converge below 0.3 mJy. The 24 micron counts exceed expectations from non-evolving models by a factor >10 at 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 micron counts from ISO. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 uJy, we derive a lower limit on the 24 micron background intensity of 1.9 +/- 0.6 nW m-2 sr-1 of which the majority (~ 60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 uJy contribute 0.8 {+0.9/-0.4} nW m-2 sr-1 to the background, which provides an estimate of the total 24 micron background of 2.7 {+1.1/-0.7} nW m-2 sr-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا