ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider spatially coupled code ensembles. A particular instance are convolutional LDPC ensembles. It was recently shown that, for transmission over the binary erasure channel, this coupling increases the belief propagation threshold of the ensemb le to the maximum a-priori threshold of the underlying component ensemble. We report on empirical evidence which suggest that the same phenomenon also occurs when transmission takes place over a general binary memoryless symmetric channel. This is confirmed both by simulations as well as by computing EBP GEXIT curves and by comparing the empirical BP thresholds of coupled ensembles to the empirically determined MAP thresholds of the underlying regular ensembles. We further consider ways of reducing the rate-loss incurred by such constructions.
`Tree pruning (TP) is an algorithm for probabilistic inference on binary Markov random fields. It has been recently derived by Dror Weitz and used to construct the first fully polynomial approximation scheme for counting independent sets up to the `t ree uniqueness threshold. It can be regarded as a clever method for pruning the belief propagation computation tree, in such a way to exactly account for the effect of loops. In this paper we generalize the original algorithm to make it suitable for decoding linear codes, and discuss various schemes for pruning the computation tree. Further, we present the outcomes of numerical simulations on several linear codes, showing that tree pruning allows to interpolate continuously between belief propagation and maximum a posteriori decoding. Finally, we discuss theoretical implications of the new method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا