ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we generalize Borels classical approximation results for the regular continued fraction expansion to the alpha-Rosen fraction expansion, using a geometric method. We give a Haas-Series-type result about all possible good approximation s for the alpha for which the Legendre constant is larger than the Hurwitz constant.
In 2004, J.C. Tong found bounds for the approximation quality of a regular continued fraction convergent of a rational number, expressed in bounds for both the previous and next approximation. We sharpen his results with a geometric method and give b oth sharp upper and lower bounds. We also calculate the asymptotic frequency that these bounds occur.
We give natural extensions for the alpha-Rosen continued fractions of Dajani et al. for a set of small alpha values by appropriately adding and deleting rectangles from the region of the natural extension for the standard Rosen fractions. It follows that the underlying maps have equal entropy.
The Rosen fractions are an infinite set of continued fraction algorithms, each giving expansions of real numbers in terms of certain algebraic integers. For each, we give a best possible upper bound for the minimum in appropriate consecutive blocks o f approximation coefficients (in the sense of Diophantine approximation by continued fraction convergents). We also obtain metrical results for large blocks of ``bad approximations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا