ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model, the network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly state-dependent and ad versarial, disturbance process that reduces flow capacity on the links, and routing policies at the nodes that have access to the network state, but are oblivious to the presence of disturbance. Under the proposed dynamics, a link becomes irreversibly inactive either due to overload condition on itself or on all of its immediate downstream links. The coupling between link activation and flow dynamics implies that links to become inactive successively are not necessarily adjacent to each other, and hence the pattern of cascading failure under our model is qualitatively different than standard cascade models. The magnitude of a disturbance process is defined as the sum of cumulative capacity reductions across time and links of the network, and the margin of resilience of the network is defined as the infimum over the magnitude of all disturbance processes under which the links at the origin node become inactive. We propose an algorithm to compute an upper bound on the margin of resilience for the setting where the routing policy only has access to information about the local state of the network. For the limiting case when the routing policies update their action as fast as network dynamics, we identify sufficient conditions on network parameters under which the upper bound is tight under an appropriate routing policy. Our analysis relies on making connections between network parameters and monotonicity in network state evolution under proposed dynamics.
Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Googles PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.
The paper investigates the throughput behavior of single-commodity dynamical flow networks governed by monotone distributed routing policies. The networks are modeled as systems of ODEs based on mass conversation laws on directed graphs with limited flow capacities on the links and constant external inflows at certain origin nodes. Under monotonicity assumptions on the routing policies, it is proven that a globally asymptotically stable equilibrium exists so that the network achieves maximal throughput, provided that no cut capacity constraint is violated by the external inflows. On the contrary, should such a constraint be violated, the network overload behavior is characterized. In particular, it is established that there exists a cut with respect to which the flow densities on every link grow linearly over time (resp. reach their respective limits simultaneously) in the case where the buffer capacities are infinite (resp. finite). The results employ an $l_1$-contraction principle for monotone dynamical systems.
Robustness of routing policies for networks is a central problem which is gaining increased attention with a growing awareness to safeguard critical infrastructure networks against natural and man-induced disruptions. Routing under limited informatio n and the possibility of cascades through the network adds serious challenges to this problem. This abstract considers the framework of dynamical networks introduced in our earlier work [1,2], where the network is modeled by a system of ordinary differential equations derived from mass conservation laws on directed acyclic graphs with a single origin-destination pair and a constant inflow at the origin. The rate of change of the particle density on each link of the network equals the difference between the inflow and the outflow on that link. The latter is modeled to depend on the current particle density on that link through a flow function. The novel modeling element in this paper is that every link is assumed to have finite capacity for particle density and that the flow function is modeled to be strictly increasing as density increases from zero up to the maximum density capacity, and is discontinuous at the maximum density capacity, with the flow function value being zero at that point. This feature, in particular, allows for the possibility of spill-backs in our model. In this paper, we present our results on resilience of such networks under distributed routing, towards perturbations that reduce link-wise flow functions.
Strong resilience properties of dynamical flow networks are analyzed for distributed routing policies. The latter are characterized by the property that the way the inflow at a non-destination node gets split among its outgoing links is allowed to de pend only on local information about the current particle densities on the outgoing links. The strong resilience of the network is defined as the infimum sum of link-wise flow capacity reductions under which the network cannot maintain the asymptotic total inflow to the destination node to be equal to the inflow at the origin. A class of distributed routing policies that are locally responsive to local information is shown to yield the maximum possible strong resilience under such local information constraints for an acyclic dynamical flow network with a single origin-destination pair. The maximal strong resilience achievable is shown to be equal to the minimum node residual capacity of the network. The latter depends on the limit flow of the unperturbed network and is defined as the minimum, among all the non-destination nodes, of the sum, over all the links outgoing from the node, of the differences between the maximum flow capacity and the limit flow of the unperturbed network. We propose a simple convex optimization problem to solve for equilibrium limit flows of the unperturbed network that minimize average delay subject to strong resilience guarantees, and discuss the use of tolls to induce such an equilibrium limit flow in transportation networks. Finally, we present illustrative simulations to discuss the connection between cascaded failures and the resilience properties of the network.
Robustness of distributed routing policies is studied for dynamical flow networks, with respect to adversarial disturbances that reduce the link flow capacities. A dynamical flow network is modeled as a system of ordinary differential equations deriv ed from mass conservation laws on a directed acyclic graph with a single origin-destination pair and a constant inflow at the origin. Routing policies regulate the way the inflow at a non-destination node gets split among its outgoing links as a function of the current particle density, while the outflow of a link is modeled to depend on the current particle density on that link through a flow function. The dynamical flow network is called partially transferring if the total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is measured as the minimum sum of the link-wise magnitude of all disturbances that make it not partially transferring. The weak resilience of a dynamical flow network with arbitrary routing policy is shown to be upper-bounded by the networks min-cut capacity, independently of the initial flow conditions. Moreover, a class of distributed routing policies that rely exclusively on local information on the particle densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These results imply that locality constraints on the information available to the routing policies do not cause loss of weak resilience. Some fundamental properties of dynamical flow networks driven by locally responsive distributed policies are analyzed in detail, including global convergence to a unique limit flow.
Stability of Wardrop equilibria is analyzed for dynamical transportation networks in which the drivers route choices are influenced by information at multiple temporal and spatial scales. The considered model involves a continuum of indistinguishable drivers commuting between a common origin/destination pair in an acyclic transportation network. The drivers route choices are affected by their, relatively infrequent, perturbed best responses to global information about the current network congestion levels, as well as their instantaneous local observation of the immediate surroundings as they transit through the network. A novel model is proposed for the drivers route choice behavior, exhibiting local consistency with their preference toward globally less congested paths as well as myopic decisions in favor of locally less congested paths. The simultaneous evolution of the traffic congestion on the network and of the aggregate path preference is modeled by a system of coupled ordinary differential equations. The main result shows that, if the frequency of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics, then the state of the transportation network ultimately approaches a neighborhood of the Wardrop equilibrium. The presented results may be read as a further evidence in support of Wardrops postulate of equilibrium, showing robustness of it with respect to non-persistent perturbations. The proposed analysis combines techniques from singular perturbation theory, evolutionary game theory, and cooperative dynamical systems.
A single-letter characterization is provided for the capacity region of finite-state multiple-access channels, when the channel state process is an independent and identically distributed sequence, the transmitters have access to partial (quantized) state information, and complete channel state information is available at the receiver. The partial channel state information is assumed to be asymmetric at the encoders. As a main contribution, a tight converse coding theorem is presented. The difficulties associated with the case when the channel state has memory are discussed and connections to decentralized stochastic control theory are presented.
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types o f agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector evolves according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain with absorbing states corresponding to the stubborn agents and converges to a harmonic vector, with every regular agents value being the weighted average of its neighbors values, and boundary conditions corresponding to the stubborn agents. Expected cross-products of the agents beliefs allow for a similar characterization in terms of coupled Markov chains on the network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of emph{homogeneous influence} emerges, whereby the stationary beliefs marginal distributions of most of the regular agents have approximately equal first and second moments.
Scaling limits are analyzed for stochastic continuous opinion dynamics systems, also known as gossip models. In such models, agents update their vector-valued opinion to a convex combination (possibly agent- and opinion-dependent) of their current va lue and that of another observed agent. It is shown that, in the limit of large agent population size, the empirical opinion density concentrates, at an exponential probability rate, around the solution of a probability-measure-valued ordinary differential equation describing the systems mean-field dynamics. Properties of the associated initial value problem are studied. The asymptotic behavior of the solution is analyzed for bounded-confidence opinion dynamics, and in the presence of an heterogeneous influential environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا