ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling limits for continuous opinion dynamics systems

53   0   0.0 ( 0 )
 نشر من قبل Giacomo Como
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scaling limits are analyzed for stochastic continuous opinion dynamics systems, also known as gossip models. In such models, agents update their vector-valued opinion to a convex combination (possibly agent- and opinion-dependent) of their current value and that of another observed agent. It is shown that, in the limit of large agent population size, the empirical opinion density concentrates, at an exponential probability rate, around the solution of a probability-measure-valued ordinary differential equation describing the systems mean-field dynamics. Properties of the associated initial value problem are studied. The asymptotic behavior of the solution is analyzed for bounded-confidence opinion dynamics, and in the presence of an heterogeneous influential environment.

قيم البحث

اقرأ أيضاً

It is proved that the distributions of scaling limits of Continuous Time Random Walks (CTRWs) solve integro-differential equations akin to Fokker-Planck Equations for diffusion processes. In contrast to previous such results, it is not assumed that t he underlying process has absolutely continuous laws. Moreover, governing equations in the backward variables are derived. Three examples of anomalous diffusion processes illustrate the theory.
We consider (a variant of) the external multi-particle diffusion-limited aggregation (MDLA) process of Rosenstock and Marquardt on the plane. Based on the recent findings of [11], [10] in one space dimension it is natural to conjecture that the scali ng limit of the growing aggregate in such a model is given by the growing solid phase in a suitable probabilistic formulation of the single-phase supercooled Stefan problem for the heat equation. To address this conjecture, we extend the probabilistic formulation from [10] to multiple space dimensions. We then show that the equation that characterizes the growth rate of the solid phase in the supercooled Stefan problem is satisfied by the scaling limit of the external MDLA process with an inequality, which can be strict in general. In the course of the proof, we establish two additional results interesting in their own right: (i) the stability of a crossing property of planar Brownian motion and (ii) a rigorous connection between the probabilistic solutions to the supercooled Stefan problem and its classical and weak solutions.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
68 - Julian Grote 2018
Fix a space dimension $dge 2$, parameters $alpha > -1$ and $beta ge 1$, and let $gamma_{d,alpha, beta}$ be the probability measure of an isotropic random vector in $mathbb{R}^d$ with density proportional to begin{align*} ||x||^alpha, expleft(-frac{|x |^beta}{beta}right), qquad xin mathbb{R}^d. end{align*} By $K_lambda$, we denote the Generalized Gamma Polytope arising as the random convex hull of a Poisson point process in $mathbb{R}^d$ with intensity measure $lambdagamma_{d,alpha,beta}$, $lambda>0$. We establish that the scaling limit of the boundary of $K_lambda$, as $lambda rightarrow infty$, is given by a universal `festoon of piecewise parabolic surfaces, independent of $alpha$ and $beta$. Moreover, we state a list of other large scale asymptotic results, including expectation and variance asymptotics, central limit theorems, concentration inequalities, Marcinkiewicz-Zygmund-type strong laws of large numbers, as well as moderate deviation principles for the intrinsic volumes and face numbers of $K_lambda$.
In this paper we consider three classes of interacting particle systems on $mathbb Z$: independent random walks, the exclusion process, and the inclusion process. We allow particles to switch their jump rate (the rate identifies the type of particle) between $1$ (fast particles) and $epsilonin[0,1]$ (slow particles). The switch between the two jump rates happens at rate $gammain(0,infty)$. In the exclusion process, the interaction is such that each site can be occupied by at most one particle of each type. In the inclusion process, the interaction takes places between particles of the same type at different sites and between particles of different type at the same site. We derive the macroscopic limit equations for the three systems, obtained after scaling space by $N^{-1}$, time by $N^2$, the switching rate by $N^{-2}$, and letting $Ntoinfty$. The limit equations for the macroscopic densities associated to the fast and slow particles is the well-studied double diffusivity model. This system of reaction-diffusion equations was introduced to model polycrystal diffusion and dislocation pipe diffusion, with the goal to overcome the limitations imposed by Ficks law. In order to investigate the microscopic out-of-equilibrium properties, we analyse the system on $[N]={1,ldots,N}$, adding boundary reservoirs at sites $1$ and $N$ of fast and slow particles, respectively. Inside $[N]$ particles move as before, but now particles are injected and absorbed at sites $1$ and $N$ with prescribed rates that depend on the particle type. We compute the steady-state density profile and the steady-state current. It turns out that uphill diffusion is possible, i.e., the total flow can be in the direction of increasing total density. This phenomenon, which cannot occur in a single-type particle system, is a violation of Ficks law made possible by the switching between types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا