ترغب بنشر مسار تعليمي؟ اضغط هنا

The peculiar object P/2010 A2 was discovered by the LINEAR near-Earth asteroid survey in January 2010 and given a cometary designation due to the presence of a trail of material, although there was no central condensation or coma. The appearance of t his object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of Main Belt Comets (MBCs). If confirmed, this new object would greatly expand the range in heliocentric distance over which MBCs are found. Here we present observations taken from the unique viewing geometry provided by ESAs Rosetta spacecraft, far from the Earth, that demonstrate that the trail is due to a single event rather than a period of cometary activity, in agreement with independent results from the Hubble Space Telescope (HST). The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around February 10, 2009.
OGLE III and MOA II are discovering 600-1000 Galactic Bulge microlens events each year. This stretches the resources available for intensive follow-up monitoring of the lightcurves in search of anomalies caused by planets near the lens stars. We advo cate optimizing microlens planet searches by using an automatic prioritization algorithm based on the planet detection zone area probed by each new data point. This optimization scheme takes account of the telescope and detector characteristics, observing overheads, sky conditions, and the time available for observing on each night. The predicted brightness and magnification of each microlens target is estimated by fitting to available data points. The optimisation scheme then yields a decision on which targets to observe and which to skip, and a recommended exposure time for each target, designed to maximize the planet detection capability of the observations. The optimal strategy maximizes detection of planet anomalies, and must be coupled with rapid data reduction to trigger continuous follow-up of anomalies that are thereby found. A web interface makes the scheme available for use by human or robotic observers at any telescope. We also outline a possible self-organising scheme that may be suitable for coordination of microlens observations by a heterogeneous telescope network.
59 - Colin Snodgrass 2007
We present photometry on 23 Jupiter Family Comets (JFCs) observed at large heliocentric distance, primarily using the 2.5m Isaac Newton Telescope (INT). Snap-shot images were taken of 17 comets, of which 5 were not detected, 3 were active and 9 were unresolved and apparently inactive. These include 103P/Hartley 2, the target of the NASA Deep Impact extended mission, EPOXI. For 6 comets we obtained time-series photometry and use this to constrain the shape and rotation period of these nuclei. The data are not of sufficient quantity or quality to measure precise rotation periods, but the time-series do allow us to measure accurate effective radii and surface colours. Of the comets observed over an extended period, 40P/Vaisala 1, 47P/Ashbrook-Jackson and P/2004 H2 (Larsen) showed faint activity which limited the study of the nucleus. Light-curves for 94P/Russell 4 and 121P/Shoemaker-Holt 2 reveal rotation periods of around 33 and 10 hours respectively, although in both cases these are not unique solutions. 94P was observed to have a large range in magnitudes implying that it is one of the most elongated nuclei known, with an axial ratio a/b ge 3. 36P/Whipple was observed at 5 different epochs, with the INT and ESOs 3.6m NTT, primarily in an attempt to confirm the preliminary short rotation period apparent in the first data set. The combined data set shows that the rotation period is actually longer than 24 hours. A measurement of the phase function of 36Ps nucleus gives a relatively steep beta = 0.060 pm 0.019. Finally, we discuss the distribution of surface colours observed in JFC nuclei, and show that it is possible to trace the evolution of colours from the Kuiper Belt Object (KBO) population to the JFC population by applying a de-reddening function to the KBO colour distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا