ﻻ يوجد ملخص باللغة العربية
OGLE III and MOA II are discovering 600-1000 Galactic Bulge microlens events each year. This stretches the resources available for intensive follow-up monitoring of the lightcurves in search of anomalies caused by planets near the lens stars. We advocate optimizing microlens planet searches by using an automatic prioritization algorithm based on the planet detection zone area probed by each new data point. This optimization scheme takes account of the telescope and detector characteristics, observing overheads, sky conditions, and the time available for observing on each night. The predicted brightness and magnification of each microlens target is estimated by fitting to available data points. The optimisation scheme then yields a decision on which targets to observe and which to skip, and a recommended exposure time for each target, designed to maximize the planet detection capability of the observations. The optimal strategy maximizes detection of planet anomalies, and must be coupled with rapid data reduction to trigger continuous follow-up of anomalies that are thereby found. A web interface makes the scheme available for use by human or robotic observers at any telescope. We also outline a possible self-organising scheme that may be suitable for coordination of microlens observations by a heterogeneous telescope network.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured
At $q=1.81pm 0.20 times 10^{-5}$, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio $q$ of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent pile-up at $q=5$--10 $times
We report the discovery of a giant planet in the KMT-2016-BLG-1397 microlensing event, which was found by The Korea Microlensing Telescope Network (KMTNet) alone. The time scale of this event is t_E = 40.0 +- 0.5 days and the mass ratio between the l
We report the discovery of KMT-2018-BLG-1292Lb, a super-Jovian $M_{rm planet} = 4.5pm 1.3,M_J$ planet orbiting an F or G dwarf $M_{rm host} = 1.5pm 0.4,M_odot$, which lies physically within ${cal O}(10,pc)$ of the Galactic plane. The source star is a
Several chemical networks have been developed to study warm (exo)planetary atmospheres. The kinetics of the reactions related to the methanol chemistry included in these schemes have been questioned. The goal of this paper is to update the methanol c