ترغب بنشر مسار تعليمي؟ اضغط هنا

A family of the so-called Maxwell times which arises in the contexto of Higher-Order Generalized Hydrodynamics (also called Mesoscopic Hydro-Thermodynamics) is evidenced. This is done in the framework of a HOGH build within a statistical foundation i n terms of a Non-Equilibrium Statistical Ensemble Formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell Times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given condition and constraints. The different types of motion are well described by contractions of the full description done in terms of a reduced number of fluxes up to a certain order.
It is analyzed the hydrodynamics of carriers (charge and heat motion) and phonons (heat motion) in semiconductors in the presence of constant electric fields. This is done in terms of a so-called Higher-Order Generalized Hydrodynamics (HOGH), also re ferred to as Mesoscopic Hydro-Thermodynamics (MHT), that is, covering phenomena involving motions displaying variations short in space and fast in time and being arbitrarily removed from equilibrium, as it is the case in modern electronic devices. The particular case of a MHT of order 1 is described, covering wire samples from macro to nano sizes. Electric and thermal conductivities are obtained. As the size decreases towards the nanometric scale, the MHT of order 1 produces results that in some cases greatly differ from those of the usual hydro-thermodynamics. The so-called Maxwell times associated to the different fluxes present in MHT are evidenced and analyzed; they have a quite relevant role in determining the characteristics of the motion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا