ترغب بنشر مسار تعليمي؟ اضغط هنا

Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad Heii lam1640 emission (full width at half maximum, $FWHMsim1200$ km s$^{-1}$) of unprecedented strength (equivalent width, $EW=7.1pm0.4$ AA). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (hst). We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of $E(B-V)=0.13$, 0.15, and 0.13, and cluster masses of $1.7times10^5$, $1.4times10^5$, and $1.1times10^5$ M$_odot$, respectively. A1 and B2 show Ovb lam1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of $N(WN5-6)/N(O)=0.23$ and 0.10, respectively. The high $N(WN5-6)/N(O)$ ratio of A1 cannot be reproduced by models that use a normal IMF and generic WR star line luminosities. We rule out that the extraordinary Heii lam1640 emission and Ovb lam1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive ($>120,M_odot$) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses $>120,M_odot$.
The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxys youngest generation of stars is critical for a detailed understanding of its star formation history, stell ar content, and evolutionary state. Here we present predicted equivalent widths for the H-beta, H-alpha, and Br-gamma recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10^6 Mo instantaneous burst and a continuous star formation rate of 1 Mo/yr), and two different treatments of initial rotation rate (v_rot = 0.0v_crit and 0.4v_crit). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.
180 - Aida Wofford 2012
We describe observations in the nearby universe (<100 Mpc) with a 10-m or larger space-based telescope having imaging and spectral capabilities in the range 912-9000 AA that would enable advances in the fields of massive stars, young populations, and star-forming galaxies, that are essential for achieving the Cosmic Origins Program objectives i) how are the chemical elements distributed in galaxies and dispersed in the circumgalactic and intergalactic medium; and ii) when did the first stars in the universe form, and how did they influence their environments. We stress the importance of observing hundreds of massive stars and their descendants individually, which will make it possible to separate the many competing factors that influence the observed properties of these systems (mass, composition, convection, mass-loss, rotation rate, binarity, magnetic fields, and cluster mass).
We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni-type lines origin ating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L >~ 10^2.75 Lsun and T_eff >~ 20,000 K. The adopted elemental abundances are 0.05 Zsun, 0.2 Zsun, 0.4 Zsun, Zsun, and 2 Zsun. The spectra cover the wavelength range from 900 to 3000 {AA} and have a resolution of 0.4 {AA}. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer (IUE) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library towards lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا