ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-time quantum walks (CTQWs) provide a valuable model for quantum transport, universal quantum computation and quantum spatial search, among others. Recently, the empowering role of new degrees of freedom in the Hamiltonian generator of CTQW s, which are the complex phases along the loops of the underlying graph, was acknowledged for its interest in optimizing or suppressing transport on specific topologies. We argue that the quantum-classical distance, a figure of merit which was introduced to capture the difference in dynamics between a CTQW and its classical, stochastic counterpart, guides the optimization of parameters of the Hamiltonian to achieve better quantum transport on cycle graphs and spatial search to the quantum speed limit without an oracle on complete graphs, the latter also implying fast uniform mixing. We compare the variations of this quantity with the 1-norm of coherence and the Inverse Participation Ratio, showing that the quantum-classical distance is linked to both, but in a topology-dependent relation, which is key to spot the most interesting quantum evolution in each case.
We introduce a minimal set of physically motivated postulates that the Hamiltonian H of a continuous-time quantum walk should satisfy in order to properly represent the quantum counterpart of the classical random walk on a given graph. We found that these conditions are satisfied by infinitely many quantum Hamiltonians, which provide novel degrees of freedom for quantum enhanced protocols, In particular, the on-site energies, i.e. the diagonal elements of H, and the phases of the off-diagonal elements are unconstrained on the quantum side. The diagonal elements represent a potential energy landscape for the quantum walk, and may be controlled by the interaction with a classical scalar field, whereas, for regular lattices in generic dimension, the off-diagonal phases of H may be tuned by the interaction with a classical gauge field residing on the edges, e.g., the electro-magnetic vector potential for a charged walker.
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker and derive the reflection and transmission probabilities of the scattered state. We show that while the quantum Fisher information is affected by the width and central momentum of the initial wave packet, this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position measurement provides a nearly optimal detection scheme.
We demonstrate the transition from local to global noise in a two-qubit all-optical quantum simulator subject to classical random fluctuations. Qubits are encoded in the polarization degree of freedom of two entangled photons generated by parametric down-conversion (PDC) while the environment is implemented using their spatial degrees of freedom. The ability to manipulate with high accuracy the number of correlated pixels of a spatial-light-modulator and the spectral PDC width, allows us to control the transition from a scenario where the qubits are embedded in local environments to the situation where they are subject to the same global noise. We witness the transition by monitoring the decoherence of the two-qubit state.
We address a particular instance where open quantum systems may be used as quantum probes for an emergent property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes against decoherence is the key feature making the overall scheme very sensitive. The specific setting examined here is that of quantum thermometry, which aims to exploits decoherence as resource to estimate the temperature of a sample. We focus on temperature estimation for a bosonic bath at equilibrium in the Ohmic regime (ranging from sub-Ohmic to super- Ohmic), by using pairs of qubits in different initial states and interacting with different environments, consisting either of a single thermal bath, or of two independent ones at the same temperature. Our scheme involves pure dephasing of the probes, thus avoiding energy exchange with the sample and the consequent perturbation of temperature itself. We discuss the interplay between correlations among the probes and correlations within the bath, and show that entanglement improves thermometry at short times whereas, if the interaction time is not constrained, coherence rather than entanglement, is the key resource in quantum thermometry.
We introduce a fidelity-based measure $text{D}_{text{CQ}}(t)$ to quantify the differences between the dynamics of classical (CW) and quantum (QW) walks over a graph. We provide universal, graph-independent, analytic expressions of this quantum-classi cal dynamical distance, showing that at short times $text{D}_{text{CQ}}(t)$ is proportional to the coherence of the walker, i.e. a genuine quantum feature, whereas for long times it depends only on the size of the graph. At intermediate times, $text{D}_{text{CQ}}(t)$ does depend on the graph topology through its algebraic connectivity. Our results show that the difference in the dynamical behaviour of classical and quantum walks is entirely due to the emergence of quantum features at short times. In the long time limit, quantumness and the different nature of the generators of the dynamics, e.g. the open system nature of CW and the unitary nature of QW, are instead contributing equally.
We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic po larization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics.
It is often the case that the environment of a quantum system may be described as a bath of oscillators with Ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recently, the use of quantum probes in characterizing Ohmic environments at zero-temperature has been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the analysis to complex system at thermal equilibrium. In particular, we discuss the interplay between thermal fluctuations and time evolution in determining the precision {attainable by} quantum probes. Our results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff frequency, i.e. values of the order $omega_c lesssim T$ (in natural units). For larger values of $omega_c$ decoherence is mostly due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a single qubit is still an effective estimation procedure.
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate the general features of the model, we review recent results on two paradigmatic examples: the dynamics of quantum walks on the line and the effects of noise on the performances of quantum spatial search on the complete and the star graph. We also discuss future perspectives, including extension to many-particle quantum walk, to noise model for on-site energies and to the analysis of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to characterize defects and perturbations occurring in complex, classical and quantum, networks.
We address the dynamics of quantum correlations in a two-qubit system subject to unbalanced random telegraph noise (RTN) and discuss in details the similarities and the differences with the balanced case. We also evaluate quantum non-Markovianity of the dynamical map. Finally, we discuss the effects of unbalanced RTN on teleportation, showing that noise imbalance mitigates decoherence and preserves teleportation fidelity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا