ترغب بنشر مسار تعليمي؟ اضغط هنا

After the pioneering investigations into graphene-based electronics at Georgia Tech (GT), great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an invaluable material for fundamental two-dimensional electron gas physics showing that only EG is on route to define future graphene science. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultra-high vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The GT team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the furnace grown graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present the CCS method and demonstrate several of epitaxial graphenes outstanding properties and applications.
Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presen ted and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure, and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analog epitaxial graphene amplifiers.
We propose a mechanism for the quenching of the Shubnikov de Haas oscillations and the quantum Hall effect observed in epitaxial graphene. Experimental data show that the scattering time of the conduction electron is magnetic field dependent and of t he order of the cyclotron orbit period, textit{i.e.} can be much smaller than the zero field scattering time. Our scenario involves the extraordinary graphene $n=0$ Landau level of the uncharged layers that produces a high density of states at the Fermi level. We find that the coupling between this $n=0$ Landau level and the conducting states of the doped plane leads to a scattering mechanism having the right magnitude to explain the experimental data.
Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undope d. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berrys phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties which may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material.Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nanoelectronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا