ﻻ يوجد ملخص باللغة العربية
We propose a mechanism for the quenching of the Shubnikov de Haas oscillations and the quantum Hall effect observed in epitaxial graphene. Experimental data show that the scattering time of the conduction electron is magnetic field dependent and of the order of the cyclotron orbit period, textit{i.e.} can be much smaller than the zero field scattering time. Our scenario involves the extraordinary graphene $n=0$ Landau level of the uncharged layers that produces a high density of states at the Fermi level. We find that the coupling between this $n=0$ Landau level and the conducting states of the doped plane leads to a scattering mechanism having the right magnitude to explain the experimental data.
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua
The quantum Hall effect, with a Berrys phase of $pi$ is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is $sim$ 20,000 cm$^2$/V$cdot$s at 4 K and ~15,000 cm$^2$/V$cdot$s at 300 K despite contamina
When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons li
Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux RH,2 at filling factor
We investigate the transport properties of high-quality single-layer graphene, epitaxially grown on a 6H-SiC(0001) substrate. We have measured transport properties, in particular charge carrier density, mobility, conductivity and magnetoconductance o