ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solut ion of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.
We implement an efficient energy-minimization algorithm for finite-difference micromagnetics that proofs especially useful for the computation of hysteresis loops. Compared to results obtained by time integration of the Landau-Lifshitz-Gilbert equati on, a speedup of up to two orders of magnitude is gained. The method is implemented in a finite-difference code running on CPUs as well as GPUs. This setup enables us to compute accurate hysteresis loops of large systems with a reasonable computational effort. As a benchmark we solve the {mu}Mag Standard Problem #1 with a high spatial resolution and compare the results to the solution of the Landau-Lifshitz-Gilbert equation in terms of accuracy and computing time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا