ترغب بنشر مسار تعليمي؟ اضغط هنا

163 - Jingbo Du , Wei Xu , Chunming Zhao 2019
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alterna ting maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
In this paper, we consider using deep neural network for OFDM symbol detection and demonstrate its performance advantages in combating large Doppler Shift. In particular, a new architecture named Cascade-Net is proposed for detection, where deep neur al network is cascading with a zero-forcing preprocessor to prevent the network stucking in a saddle point or a local minimum point. In addition, we propose a sliding detection approach in order to detect OFDM symbols with large number of subcarriers. We evaluate this new architecture, as well as the sliding algorithm, using the Rayleigh channel with large Doppler spread, which could degrade detection performance in an OFDM system and is especially severe for high frequency band and mmWave communications. The numerical results of OFDM detection in SISO scenario show that cascade-net can achieve better performance than zero-forcing method while providing robustness against ill conditioned channels. We also show the better performance of the sliding cascade network (SCN) compared to sliding zero-forcing detector through numerical simulation.
In this paper, a neural network-aided bit-interleaved coded modulation (NN-BICM) receiver is designed to mitigate the nonlinear clipping distortion in the LDPC coded direct currentbiased optical orthogonal frequency division multiplexing (DCOOFDM) sy stems. Taking the cross-entropy as loss function, a feed forward network is trained by backpropagation algorithm to output the condition probability through the softmax activation function, thereby assisting in a modified log-likelihood ratio (LLR) improvement. To reduce the complexity, this feed-forward network simplifies the input layer with a single symbol and the corresponding Gaussian variance instead of focusing on the inter-carrier interference between multiple subcarriers. On the basis of the neural network-aided BICM with Gray labelling, we propose a novel stacked network architecture of the bitinterleaved coded modulation with iterative decoding (NN-BICMID). Its performance has been improved further by calculating the condition probability with the aid of a priori probability that derived from the extrinsic LLRs in the LDPC decoder at the last iteration, at the expense of customizing neural network detectors at each iteration time separately. Utilizing the optimal DC bias as the midpoint of the dynamic region, the simulation results demonstrate that both the NN-BICM and NN-BICM-ID schemes achieve noticeable performance gains than other counterparts, in which the NN-BICM-ID clearly outperforms NN-BICM with various modulation and coding schemes.
We study the outage probability of opportunistic relay selection in decode-and-forward relaying with secrecy constraints. We derive the closed-form expression for the outage probability. Based on the analytical result, the asymptotic performance is t hen investigated. The accuracy of our performance analysis is verified by the simulation results.
An opportunistic relay selection based on instantaneous knowledge of channels is considered to increase security against eavesdroppers. The closed-form expressions are derived for the average secrecy rates and the outage probability when the cooperat ive networks use Decode-and-Forward (DF) or Amplify-and-Forward (AF) strategy. These techniques are demonstrated analytically and with simulation results.
We investigate the secure communications over correlated wiretap Rayleigh fading channels assuming the full channel state information (CSI) available. Based on the information theoretic formulation, we derive closed-form expressions for the average s ecrecy capacity and the outage probability. Simulation results confirm our analytical expressions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا