ترغب بنشر مسار تعليمي؟ اضغط هنا

The parent compound of an unconventional superconductor must contain unusual correlated electronic and magnetic properties of its own. In the high-Tc potassium intercalated FeSe, there has been significant debate regarding what the exact parent compo und is. Our studies unambiguously show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high temperature annealing, and the overall picture indicates that superconductivity in K2-xFe4+ySe5 originates from the Fe-vacancy order to disorder transition. Thus, the long pending question whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates.
We utilize ultrafast optical measurement to study the quasiparticle relaxation in stoichiometric LiFeAs and nearly optimally doped (BaK)Fe2As2 crystals. According to our temperature-dependent studies of LiFeAs, we have observed pseudogap-like feature at onset temperature of ~ 55 K, which is above Tc = 15 K. In addition, the onset temperature of pseudogap ~90K was also observed in Ba0.6K0.4Fe2As2 (Tc = 36 K). Our findings seem implying that the pseudogap feature, which is due to antiferromagnetic fluctuations, is universal for the largely studied 11, 111, 122, and 1111 iron-based superconductors.
Several superconducting transition temperatures in the range of 30-40 K were reported in the recently discovered intercalated FeSe sytem (A1-xFe2-ySe2, A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more th an one magnetic phase with particular orders of iron vacancy and/or potassium vacancy were identified, and some were argued to be the parent phase. Here we show the discovery of the presence and ordering of iron vacancy in nonintercalated FeSe (PbO-type tetragonal {beta}-Fe1-xSe). Three types of iron-vacancy order were found through analytical electron microscopy, and one was identified to be nonsuperconducting and magnetic at low temperature. This discovery suggests that the rich-phases found in A1-xFe2-ySe2 are not exclusive in Fe-Se related superconductors. In addition, the magnetic {beta}-Fe1-xSe phases with particular iron-vacancy orders are more likely to be the parent phase of FeSe superconducting system, instead of the previously assigned {beta}-Fe1+{delta}Te.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا