ترغب بنشر مسار تعليمي؟ اضغط هنا

We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. Given a cup diagram, we expl icitly write down all flags contained in the component associated to the cup diagram. This generalizes results by Stroppel--Webster and Fung to all classical types.
It is a remarkable theorem by Maffei--Nakajima that the Slodowy variety, which consists of certain complete flags, can be realized as certain Nakajima quiver variety of type A. However, the isomorphism is rather implicit as it takes to solve a system of equations in which variables are linear maps. In this paper, we construct solutions to this system and thus establish an explicit and efficient way to realize these quiver varieties in terms of complete flags in the corresponding Slodowy varieties. As Slodowy varieties contain Springer fibers naturally, we further provide an explicit description of irreducible components of two-row Springer fibers in terms of a family of kernel relations via quiver representations, which allows us to formulate a characterization of irreducible components of Springer fibers of classical type.
We give an explicit description of the irreducible components of two-row Springer fibers in type A as closed subvarieties in certain Nakajima quiver varieties in terms of quiver representations. By taking invariants under a variety automorphism, we o btain an explicit algebraic description of the irreducible components of two-row Springer fibers of classical type. As a consequence, we discover relations on isotropic flags that describe the irreducible components.
In this paper the authors investigate the $q$-Schur algebras of type B that were constructed earlier using coideal subalgebras for the quantum group of type A. The authors present a coordinate algebra type construction that allows us to realize these $q$-Schur algebras as the duals of the $d$th graded components of certain graded coalgebras. Under suitable conditions an isomorphism theorem is proved that demonstrates that the representation theory reduces to the $q$-Schur algebra of type A. This enables the authors to address the questions of cellularity, quasi-hereditariness and representation type of these algebras. Later it is shown that these algebras realize the $1$-faithful quasi hereditary covers of the Hecke algebras of type B. As a further consequence, the authors demonstrate that these algebras are Morita equivalent to Rouquiers finite-dimensional algebras that arise from the category ${mathcal O}$ for rational Cherednik algebras for the Weyl group of type B. In particular, we have introduced a Schur-type functor that identifies the type B Knizhnik-Zamolodchikov functor.
93 - Chun-Ju Lai , Li Luo 2018
We study the (quantum) Schur algebras of type B/C corresponding to the Hecke algebras with unequal parameters. We prove that the Schur algebras afford a stabilization construction in the sense of Beilinson-Lusztig-MacPherson that constructs a multipa rameter upgrade of the quantum symmetric pair coideal subalgebras of type A III/IV with no black nodes. We further obtain the canonical basis of the Schur/coideal subalgebras, at the specialization associated to any weight function. These bases are the counterparts of Lusztigs bar-invariant basis for Hecke algebras with unequal parameters. In the appendix we provide an algebraic version of a type D Beilinson-Lusztig-MacPherson construction which is first introduced by Fan-Li from a geometric viewpoint.
We establish a three-parameter Schur duality between the affine Hecke algebra of type C and a coideal subalgebra of quantum affine $mathfrak{sl}_n$. At the equal parameter specializations, we obtain Schur dualities of types BCD.
We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bas es for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra ${mathbf K}^{mathfrak c}_n$. We show that ${mathbf K}^{mathfrak c}_n$ is a coideal subalgebra of quantum affine algebra ${bf U}(hat{mathfrak{gl}}_n)$, and $big({mathbf U}(hat{ mathfrak{gl}}_n), {mathbf K}^{mathfrak c}_n)$ forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion.
116 - Chun-Ju Lai , Li Luo 2015
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic constru ction of the canonical basis for modified quantum affine $mathfrak{gl}_n$, which among other results used an earlier construction of monomial bases using Ringel-Hall algebra of the cyclic quiver. In this paper, we give an elementary algebraic construction of a monomial basis for affine Schur algebras and modified quantum affine $mathfrak{gl}_n$.
166 - Chun-Ju Lai 2013
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا