ﻻ يوجد ملخص باللغة العربية
We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. Given a cup diagram, we explicitly write down all flags contained in the component associated to the cup diagram. This generalizes results by Stroppel--Webster and Fung to all classical types.
We give an explicit description of the irreducible components of two-row Springer fibers in type A as closed subvarieties in certain Nakajima quiver varieties in terms of quiver representations. By taking invariants under a variety automorphism, we o
Kato introduced the exotic nilpotent cone to be a substitute for the ordinary nilpotent cone of type C with cleaner properties. Here we describe the irreducible components of exotic Springer fibres (the fibres of the resolution of the exotic nilpoten
We define the notion of basic set data for finite groups (building on the notion of basic set, but including an order on the irreducible characters as part of the structure), and we prove that the Springer correspondence provides basic set data for W
We study the exotic t-structure on the derived category of coherent sheaves on two-block Springer fibre (i.e. for a nilpotent matrix of type (m+n,n) in type A). The exotic t-structure has been defined by Bezrukavnikov and Mirkovic for Springer theore
Katos exotic nilpotent cone was introduced as a substitute for the ordinary nilpotent cone of type C with cleaner properties. The geometric Robinson-Schensted correspondence is obtained by parametrizing the irreducible components of the Steinberg var