ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($< 50$ kpc) regions of 16 low redshift ($z<0.3$) cool core brightest cluster galaxies (BCGs). New Hubble Space Telescope (HST) imaging of far ult raviolet continuum emission from young ($sim 10$ Myr), massive ($> 5$ Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Ly$alpha$, narrowband H$alpha$, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot ($sim10^{7-8}$ K) and warm ionised ($sim 10^4$ K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavitys compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to- freefall time ratio is $t_{mathrm{cool}}/t_{mathrm{ff}}sim 10$. This condition is roughly met at the maxmial projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
We present U, V, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier HST observations. The filaments are associated wit h a faint blue continuum light (possibly from young stars) and faint H-alpha emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of the galaxy. The morphology of the filaments is different on the two sides - the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow moving boundary layer outside the relativistic flow. As suggested by Fabian et al. (2008), magnetic fields in the filaments may stabilize them against disruption. We consider a speculative scenario to explain the relation between the radio source and the shock and cavities in the hot ICM seen in the Chandra data (Nulsen et al. 2005). We suggest the radio source originally (~60 Myr ago) propagated along a position angle of ~35 degrees where it created the shock and cavities. The radio source axis changed to its current orientation (~100 degrees) possibly due to a supermassive black hole merger and began its current epoch of activity about 20 Myr ago.
Brightest cluster galaxies (BCGs) in the cores of galaxy clusters have distinctly different properties from other low redshift massive ellipticals. The majority of the BCGs in cool-core clusters show signs of active star formation. We present observa tions of NGC 4696, the BCG of the Centaurus galaxy cluster, at far-infrared (FIR) wavelengths with the Herschel space telescope. Using the PACS spectrometer, we detect the two strongest coolants of the interstellar medium, CII at 157.74 micron and OI at 63.18 micron, and in addition NII at 121.90 micron. The CII emission is extended over a region of 7 kpc with a similar spatial morphology and kinematics to the optical H-alpha emission. This has the profound implication that the optical hydrogen recombination line, H-alpha, the optical forbidden lines, NII 6583 Angstrom, the soft X-ray filaments and the far-infrared CII line all have the same energy source. We also detect dust emission using the PACS and SPIRE photometers at all six wavebands. We perform a detailed spectral energy distribution fitting using a two-component modified black-body function and find a cold 19 K dust component with mass 1.6x10^6 solar mass and a warm 46 K dust component with mass 4.0x10^3 solar mass. The total FIR luminosity between 8 micron and 1000 micron is 7.5x10^8 solar luminosity, which using Kennicutt relation yields a low star formation rate of 0.13 solar mass per yr. This value is consistent with values derived from other tracers, such as ultraviolet emission. Combining the spectroscopic and photometric results together with optical H-alpha, we model emitting clouds consisting of photodissociation regions (PDRs) adjacent to ionized regions. We show that in addition to old and young stellar populations, there is another source of energy, such as cosmic rays, shocks or reconnection diffusion, required to excite the H-alpha and CII filaments.
We present deep emission-line imaging taken with the SOAR Optical Imaging Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA, Chandra X-ray, and XMM U V data. 2A0335+096 is a bright, cool-core X-ray cluster, once known as a cooling flow. Within the highly disturbed core revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured optical emission-line system. The redshift of the companion is within 100 km/s of the BCG and has certainly interacted with the BCG, and is likely bound to it. The comparison of optical and radio images shows curved filaments in H-alpha emission surrounding the resolved radio source. The velocity structure of the emission-line bar between the BCG nucleus and the companion galaxy provides strong evidence for an interaction between the two in the last ~50 Myrs. The age of the radio source is similar to the interaction time, so this interaction may have provoked an episode of radio activity. We estimate a star formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a rate similar to, but somewhat lower than, the revised X-ray cooling rate of 10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The Halpha nebula is limited to a region of high X-ray surface brightness and cool X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie in the BCG. The estimated age of the radio lobes and their interaction with the optical emission-line gas, the estimated timescale for depletion and accumulation of cold gas, and the dynamical time in the system are all similar, suggesting a common trigger mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا