ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the crystallization mechanism of a single, flexible homopolymer chain with short range attractions. For a sufficiently narrow attractive well, the system undergoes a first-order like freezing transition from an expanded disordered coil to a compact crystalline state. Based on a maximum likelihood analysis of committor values computed for configurations obtained by Wang-Landau sampling, we construct a non-linear string reaction coordinate for the coil-to-crystal transition. In contrast to a linear reaction coordinate, the string reaction coordinate captures the effect of different degrees of freedom controlling different stages of the transition. Our analysis indicates that a combination of the energy and the global crystallinity parameter Q6 provide the most accurate measure for the progress of the transition. While the crystallinity parameter Q6 is most relevant in the initial stages of the crystallization, the later stages are dominated by a decrease in the potential energy.
An essential parameter for crystal growth is the kinetic coefficient given by the proportionality between super-cooling and average growth velocity. Here we show that this coefficient can be computed in a single equilibrium simulation using the inter face pinning method where two-phase configurations are stabilized by adding an spring-like bias field coupling to an order-parameter that discriminates between the two phases. Crystal growth is a Smoluchowski process and the crystal growth rate can therefore be computed from the terminal exponential relaxation of the order parameter. The approach is investigated in detail for the Lennard-Jones model. We find that the kinetic coefficient scales as the inverse square-root of temperature along the high temperature part of the melting line. The practical usability of the method is demonstrated by computing the kinetic coefficient of the elements Na, Mg, Al and Si from first principles. It is briefly discussed how a generalized version of the method is an alternative to forward flux sampling methods for computing rates along trajectories of rare events.
In this work we characterize the configurational space of a short chain of colloidal particles as function of the range of directional and heterogeneous isotropic interactions. The individual particles forming the chain are colloids decorated with pa tches that act as interaction sites between them. We show, using computer simulations, that it is possible to sample the relative probability of occurrence of a structure with a sequence in the space of all possible realizations of the chain. The results presented here represent a first attempt to map the space of possible configurations that a chain of colloidal particles may adopt. Knowledge of such a space is crucial for a possible application of colloidal chains as models for designable self-assembling systems.
Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a number of simple models, including an harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.
Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond orde r vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can be distinguished.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا