ترغب بنشر مسار تعليمي؟ اضغط هنا

Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to-date. Recently, this toolbox has expanded to includ e different materials for their nanofabrication opportunities, and novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with ultrabright single photon emission predominantly into the desirable zero-phonon line. The challenge for utilizing this centre is to realise the hitherto elusive optical access to its electronic spin. Here, we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. In low-strain bulk diamond spin-selective excitation under finite magnetic field reveals a spin-state purity approaching unity in the excited state. We also investigate the effect of strain on the centres in nanodiamonds and discuss how spin selectivity in the excited state remains accessible in this regime.
We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high quality, low stress CVD diamond film by using temperature dependent luminescence spectroscopy in the temperature range 5-295 K. We investigate in detail the temperature dependent fine structure of the zero-phonon-line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature dependent homogeneous broadening and blue shifts by about 20 cm-1 upon cooling from room temperature to 5 K. We employ excitation power dependent g(2) measurements to explore the temperature dependent internal population dynamics of single SiV centres and infer almost temperature independent dynamics.
The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum informa tion processing due to the extraordinary properties of its colour centres enabling e.g. bright single photon emission and spin quantum bits. To control emitted photons and to interconnect distant quantum bits, micro-cavities directly fabricated in the diamond material are desired. However, the production of photonic devices in high-quality diamond has been a challenge so far. Here we present a method to fabricate one- and two-dimensional photonic crystal micro-cavities in single-crystal diamond, yielding quality factors up to 700. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy centres and measure an intensity enhancement by a factor of 2.8. The controlled coupling to small mode volume photonic crystal cavities paves the way to larger scale photonic quantum devices based on single-crystal diamond.
Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emissio n, but within a large, phonon-broadened spectrum (~100nm), which strongly limits its applicability for quantum communication. By contrast, Ni-related centers exhibit narrow emission lines at room temperature. We present investigations on single color centers consisting of Ni and Si created by ion implantation into single crystalline IIa diamond. We use systematic variations of ion doses between 10^8/cm^2 and 10^14/cm^2 and energies between 30keV and 1.8MeV. The Ni-related centers show emission in the near infrared spectral range (~770nm to 787nm) with a small line-width (~3nm FWHM). A measurement of the intensity correlation function proves single-photon emission. Saturation measurements yield a rather high saturation count rate of 77.9 kcounts/s. Polarization dependent measurements indicate the presence of two orthogonal dipoles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا