ترغب بنشر مسار تعليمي؟ اضغط هنا

459 - Chintan Shah 2021
We report measurements of electron-impact excitation cross sections for the strong K-shell n=2-1 transitions in S XV using the LLNL EBIT-I electron beam ion trap, two crystal spectrometers, and the EBIT Calorimeter Spectrometer. The cross sections ar e determined by direct normalization to the well known cross sections of radiative electron capture, measured simultaneously. Using contemporaneous polarization measurements with the two crystal spectrometers, whose dispersion planes are oriented parallel and perpendicular to the electron beam direction, the polarization of the direct excitation line emission is determined, and in turn the isotropic total cross sections are extracted. We further experimentally investigate various line-formation mechanisms, finding that radiative cascades and collisional inner-shell ionization dominate the degree of linear polarization and total line-emission cross sections of the forbidden line $z$.
266 - Filipe Grilo 2021
We investigated experimentally and theoretically dielectronic recombination (DR) populating doubly excited configurations $3l3l$ (LMM) in Fe XVII, the strongest channel for soft X-ray line formation in this ubiquitous species. We used two different e lectron beam ion traps and two complementary measurement schemes for preparing the Fe XVII samples and evaluating their purity, observing negligible contamination effects. This allowed us to diagnose the electron density in both EBITs. We compared our experimental resonant energies and strengths with those of previous independent work at a storage ring as well as those of configuration interaction, multiconfiguration Dirac-Fock calculations, and many-body perturbation theory. This last approach showed outstanding predictive power in the comparison with the combined independent experimental results. From these we also inferred DR rate coefficients, unveiling discrepancies from those compiled in the OPEN-ADAS and AtomDB databases.
The Hitomi results for the Perseus cluster have shown that accurate atomic models are essential to the success of X-ray spectroscopic missions, and just as important as knowledge on instrumental calibration and astrophysical modeling. Preparing the m odels requires a multifaceted approach, including theoretical calculations, laboratory measurements, and calibration using real observations. In a previous paper, we presented a calculation of the electron impact cross sections on the transitions forming the Fe-L complex. In the present work, we systematically test the calculation against cross sections of ions measured in an electron beam ion trap experiment. A two-dimensional analysis in the electron beam energies and X-ray photon energies is utilized to disentangle radiative channels following dielectronic recombination, direct electron-impact excitation, and resonant excitation processes in the experimental data. The data calibrated through laboratory measurements are further fed into global modeling of the Chandra grating spectrum of Capella. We investigate and compare the fit quality, as well as sensitivity of the derived physical parameters to the underlying atomic data and the astrophysical plasma modeling. We further list the potential areas of disagreement between the observation and the present calculations, which in turn calls for renewed efforts in theoretical calculations and targeted laboratory measurements.
Locating the source of an epidemic, or patient zero (P0), can provide critical insights into the infections transmission course and allow efficient resource allocation. Existing methods use graph-theoretic centrality measures and expensive message-pa ssing algorithms, requiring knowledge of the underlying dynamics and its parameters. In this paper, we revisit this problem using graph neural networks (GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in a class of epidemic models. We evaluate our method against different epidemic models on both synthetic and a real-world contact network considering a disease with history and characteristics of COVID-19. % We observe that GNNs can identify P0 close to the theoretical bound on accuracy, without explicit input of dynamics or its parameters. In addition, GNN is over 100 times faster than classic methods for inference on arbitrary graph topologies. Our theoretical bound also shows that the epidemic is like a ticking clock, emphasizing the importance of early contact-tracing. We find a maximum time after which accurate recovery of the source becomes impossible, regardless of the algorithm used.
For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic $2p-3d$ transitions, $3C$ and $3D$, in Fe XVII ions found oscillator strength ratios $f(3C)/f(3D)$ disagreeing with theory, but uncertaint ies had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of $f(3C)/f(3D) = 3.09(8)(6)$ supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.
62 - Chintan Shah 2019
We determined relative X-ray photon emission cross sections in Fe XVII ions that were mono-energetically excited in an electron beam ion trap. Line formation for the 3s (3s-2p) and 3d (3d-2p) transitions of interest proceeds through dielectronic reco mbination (DR), direct electron-impact excitation (DE), resonant excitation (RE), and radiative cascades. By reducing the electron-energy spread to a sixth of that of previous works and increasing counting statistics by three orders of magnitude, we account for hitherto unresolved contributions from DR and the little-studied RE process to the 3d transitions, and also for cascade population of the 3s line manifold through forbidden states. We found good agreement with state-of-the-art many-body perturbation theory (MBPT) and distorted-wave (DW) method for the 3s transition, while in the 3d transitions known discrepancies were confirmed. Our results show that DW calculations overestimate the 3d line emission due to DE by ~20%. Inclusion of electron-electron correlation effects through the MBPT method in the DE cross section calculations reduces this disagreement by ~11%. The remaining ~9% in 3d and ~11% in 3s/3d discrepancies are consistent with those found in previous laboratory measurements, solar, and astrophysical observations. Meanwhile, spectral models of opacity, temperature, and turbulence velocity should be adjusted to these experimental cross sections to optimize the accuracy of plasma diagnostics based on these bright soft X-ray lines of Fe XVII.
Theoretical and experimental resonance strengths for KLL dielectronic recombination (DR) into He-, Li-, Be-, and B-like mercury ions are presented, based on state-resolved DR x-ray spectra recorded at the Heidelberg electron beam ion trap. The DR res onance strengths were experimentally extracted by normalizing them to simultaneously recorded radiative recombination signals. The results are compared to state-of-the-art atomic calculations that include relativistic electron-electron correlation and configuration mixing effects. Combining the present data with other existing ones, we derive an improved semi-empirical $Z$-scaling law for DR resonance strength as a function of the atomic number, taking into account higher-order relativistic corrections, which are especially relevant for heavy highly charged ions.
44 - Chintan Shah 2018
We present a systematic measurement of the X-ray emission asymmetries in the K-shell dielectronic, trielectronic, and quadruelectronic recombination of free electrons into highly charged ions. Iron ions in He-like through O-like charge states were pr oduced in an electron beam ion trap, and the electron-ion collision energy was scanned over the recombination resonances. Two identical X-ray detectors mounted head-on and side-on with respect to the electron beam propagation recorded X-rays emitted in the decay of resonantly populated states. The degrees of linear polarization of X-rays inferred from observed emission asymmetries benchmark distorted-wave predictions of the Flexible Atomic Code (FAC) for several dielectronic recombination satellite lines. The present method also demonstrates its applicability for diagnostics of energy and direction of electron beams inside hot anisotropic plasmas. Both experimental and theoretical data can be used for modeling of hot astrophysical and fusion plasmas.
The reported observations of an unidentified X-ray line feature at $sim$3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the emph{K}-shell X-ray spectra of highly ionized bare sulfur i ons following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produce $mathrm{S}^{16+}$ and $mathrm{S}^{15+}$ ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchanged-induced X-ray feature at the Lyman series limit (3.47 $pm$ 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu and Kaastra (A & A textbf{584}, {L11} (2015)).
389 - Chintan Shah 2016
We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا