ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution Laboratory Measurements of K-shell X-ray Line Polarization and Excitation Cross Sections in Heliumlike S XV Ions

460   0   0.0 ( 0 )
 نشر من قبل Chintan Shah
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chintan Shah




اسأل ChatGPT حول البحث

We report measurements of electron-impact excitation cross sections for the strong K-shell n=2-1 transitions in S XV using the LLNL EBIT-I electron beam ion trap, two crystal spectrometers, and the EBIT Calorimeter Spectrometer. The cross sections are determined by direct normalization to the well known cross sections of radiative electron capture, measured simultaneously. Using contemporaneous polarization measurements with the two crystal spectrometers, whose dispersion planes are oriented parallel and perpendicular to the electron beam direction, the polarization of the direct excitation line emission is determined, and in turn the isotropic total cross sections are extracted. We further experimentally investigate various line-formation mechanisms, finding that radiative cascades and collisional inner-shell ionization dominate the degree of linear polarization and total line-emission cross sections of the forbidden line $z$.



قيم البحث

اقرأ أيضاً

376 - N. Hell 2016
We have measured the energies of the strongest 1s-2ell (ell=s,p) transitions in He- through Ne-like silicon and sulfur ions to an accuracy of better than 1eV using Lawrence Livermore National Laboratorys electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandras high energy transmission grating has made it possible to measure Doppler shifts of 100km/s. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandras 100km/s limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. We show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.
389 - Chintan Shah 2016
We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.
We present $R$-matrix calculations of photoabsorption and photoionization cross sections across the K-edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an o ptical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas--Fermi--Dirac statistical model potential. Configuration interaction is considered among all states up to $n=3$. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for modeling of features found in photoionized plasmas.
For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic $2p-3d$ transitions, $3C$ and $3D$, in Fe XVII ions found oscillator strength ratios $f(3C)/f(3D)$ disagreeing with theory, but uncertaint ies had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of $f(3C)/f(3D) = 3.09(8)(6)$ supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.
X-ray photoabsorption cross sections have been computed for all magnesium ions using the $R$-matrix method. A comparison with the other available data for Mg II-Mg X shows good qualitative agreement in the resultant resonance shapes. However, for the lower ionization stages, and for singly-ionized Mg II in particular, the previous $R$-matrix results (Witthoeft et al.2009; Witthoeft et al. 2011) overestimate the K-edge position due to the neglect of important orbital relaxation effects, and a global shift downward in photon energy of those cross sections is therefore warranted. We have found that the cross sections for Mg I and Mg II are further complicated by the M-shell ($n=3$) occupancy. As a result, the treatment of spectator Auger decay of $1srightarrow np$ resonances using a method based on multichannel quantum defect theory and an optical potential becomes problematic, making it necessary to implement an alternative, approximate treatment of Auger decay for neutral Mg. The new cross sections are used to fit the Mg K edge in XMM-Newton spectra of the low-mass X-ray binary GS 1826-238, where most of the interstellar Mg is found to be in ionized form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا