ترغب بنشر مسار تعليمي؟ اضغط هنا

Brain Computer Interface technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery. In BCI applications, the ElectroEncephaloGraphy is a very popular mea surement for brain dynamics because of its non-invasive nature. Although there is a high interest in the BCI topic, the performance of existing systems is still far from ideal, due to the difficulty of performing pattern recognition tasks in EEG signals. BCI systems are composed of a wide range of components that perform signal pre-processing, feature extraction and decision making. In this paper, we define a BCI Framework, named Enhanced Fusion Framework, where we propose three different ideas to improve the existing MI-based BCI frameworks. Firstly, we include aan additional pre-processing step of the signal: a differentiation of the EEG signal that makes it time-invariant. Secondly, we add an additional frequency band as feature for the system and we show its effect on the performance of the system. Finally, we make a profound study of how to make the final decision in the system. We propose the usage of both up to six types of different classifiers and a wide range of aggregation functions (including classical aggregations, Choquet and Sugeno integrals and their extensions and overlap functions) to fuse the information given by the considered classifiers. We have tested this new system on a dataset of 20 volunteers performing motor imagery-based brain-computer interface experiments. On this dataset, the new system achieved a 88.80% of accuracy. We also propose an optimized version of our system that is able to obtain up to 90,76%. Furthermore, we find that the pair Choquet/Sugeno integrals and overlap functions are the ones providing the best results.
Recent development in deep learning techniques has attracted attention in decoding and classification in EEG signals. Despite several efforts utilizing different features of EEG signals, a significant research challenge is to use time-dependent featu res in combination with local and global features. There have been several efforts to remodel the deep learning convolution neural networks (CNNs) to capture time-dependency information by incorporating hand-crafted features, slicing the input data in a smaller time-windows, and recurrent convolution. However, these approaches partially solve the problem, but simultaneously hinder the CNNs capability to learn from unknown information that might be present in the data. To solve this, we have proposed a novel time encoding kernel (EnK) approach, which introduces the increasing time information during convolution operation in CNN. The encoded information by EnK lets CNN learn time-dependent features in-addition to local and global features. We performed extensive experiments on several EEG datasets: cognitive conflict (CC), physical-human robot collaboration (pHRC), P300 visual-evoked potentials, movement-related cortical potentials (MRCP). EnK outperforms the state-of-art by 12% (F1 score). Moreover, the EnK approach required only one additional parameter to learn and can be applied to a virtually any CNN architectures with minimal efforts. These results support our methodology and show high potential to improve CNN performance in the context of time-series data in general.
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipel ine was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا