ترغب بنشر مسار تعليمي؟ اضغط هنا

184 - Chien-Yeah Seng 2021
We review some recent progress in the theory of electroweak radiative corrections in semileptonic decay processes. The resurrection of the so-called Sirlins representation based on current algebra relations permits a clear separation between the pert urbatively-calculable and incalculable pieces in the $mathcal{O}(G_Falpha)$ radiative corrections. The latter are expressed as compact hadronic matrix elements that allow systematic non-perturbative analysis such as dispersion relation and lattice QCD. This brings substantial improvements to the precision of the electroweak radiative corrections in semileptonic decays of pion, kaon, free neutron and $J^P=0^+$ nuclei that are important theory inputs in precision tests of the Standard Model. Unresolved issues and future prospects are discussed.
We discuss the recent progress in the study of semileptonic kaon and pion decays, including new experimental results, improved electroweak radiative corrections, form factor calculations and isospin-breaking effects. As a result, we obtain $|V_{us}|= 0.22309(40)(39)(3)$ from kaon semileptonic decays and $|V_{us}/V_{ud}|=0.22908(66)(41)(40)(2)(1)$ from the ratio between the kaon and pion semileptonic decay rates. We report an apparent violation of the top-row Cabibbo-Kobayashi-Maskawa matrix unitarity at a $3.2sim 5.6sigma$ level, and a discrepancy at a $2.2sigma$ level between the value of $|V_{us}/V_{ud}|$ determined from the vector and axial charged weak interactions. Prospects for future improvements in those comparative precision tests involving $|V_{ud}|$, $|V_{us}|$ and their implications for physics beyond the Standard Model are described.
We present the first and complete dispersion relation analysis of the inner radiative corrections to the axial coupling constant $g_A$ in the neutron $beta$-decay. Using experimental inputs from the elastic form factors and the spin-dependent structu re function $g_1$, we determine the contribution from the $gamma W$-box diagram to a precision better than $10^{-4}$. Our calculation indicates that the inner radiative corrections to the Fermi and the Gamow-Teller matrix element in the neutron $beta$-decay are almost identical, i.e. the ratio $lambda=g_A/g_V$ is almost unrenormalized. With this result, we predict the bare axial coupling constant to be {$mathring{g}_A=-1.2754(13)_mathrm{exp}(2)_mathrm{RC}$} based on the PDG average $lambda=-1.2756(13)$
170 - Chien-Yeah Seng 2021
We will describe several pioneering efforts in the study of electromagnetic radiative corrections to semileptonic decay processes, with particular emphasis on the role of lattice QCD. These studies are essential for the precise extraction of the matr ix element $V_{ud}$ from beta decays of pion, free neutron and $J^P=0^+$ nuclei, and are crucial to address several recently-emerged anomalies involving $V_{ud}$ and $V_{us}$, which may provide hints for physics beyond the Standard Model.
The measurements of $V_{us}$ in leptonic $(K_{mu 2})$ and semileptonic $(K_{l3})$ kaon decays exhibit a $3sigma$ disagreement, which could originate either from physics beyond the Standard Model or some large unidentified Standard Model systematic ef fects. Clarifying this issue requires a careful examination of all existing Standard Model inputs. Making use of a newly-proposed computational framework and the most recent lattice QCD results, we perform a comprehensive re-analysis of the electroweak radiative corrections to the $K_{e3}$ decay rates that achieves an unprecedented level of precision of $10^{-4}$, which improves the current best results by almost an order of magnitude. No large systematic effects are found, which suggests that the electroweak radiative corrections should be removed from the ``list of culprits responsible for the $K_{mu 2}$--$K_{l3}$ discrepancy.
We report a high-precision calculation of the Standard Model electroweak radiative corrections in the $Kto pi e^+ u(gamma)$ decay as a part of the combined theory effort to understand the existing anomaly in the determinations of $V_{us}$. Our new an alysis features a chiral resummation of the large infrared-singular terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained from chiral perturbation theory, we reduce the existing theory uncertainty from $10^{-3}$ to $10^{-4}$. Our result suggests that the Standard Model electroweak effects cannot account for the $V_{us}$ anomaly.
Based on our analysis of the contributions from the connected and disconnected contraction diagrams to the pion-kaon scattering amplitude, we provide the first determination of the low-energy constant $L_0^r$ in SU$(4|1)$ Partially-Quenched Chiral Pe rturbation Theory from data of the Extended Twisted Mass Collaboration, $L_0^r = 0.51(26)cdot 10^{-3}$ at $mu=1$ GeV.
We present a comprehensive analysis of form factors for two light pseudoscalar mesons induced by scalar, vector, and tensor quark operators. The theoretical framework is based on a combination of unitarized chiral perturbation theory and dispersion r elations. The low-energy constants in chiral perturbation theory are fixed by a global fit to the available data of the two-meson scattering phase shifts. Each form factor derived from unitarized chiral perturbation theory is improved by iteratively applying a dispersion relation. This study updates the existing results in the literature and explores those that have not been systematically studied previously, in particular the two-meson tensor form factors within unitarized chiral perturbation theory. We also discuss the applications of these form factors as mandatory inputs for low-energy phenomena, such as the semi-leptonic decays $B_sto pi^+pi^-ell^+ell^-$ and the $tau$ lepton decay $taurightarrowpi^{-}pi^{0} u_{tau}$, in searches for physics beyond the Standard Model.
We construct several classes of hadronic matrix elements and relate them to the low-energy constants in Chiral Perturbation Theory that describe the electromagnetic effects in the semileptonic beta decay of the pion and the kaon. We propose to calcul ate them using lattice QCD, and argue that such a calculation will make an immediate impact to a number of interesting topics at the precision frontier, including the outstanding anomalies in $|V_{us}|$ and the top-row Cabibbo-Kobayashi-Maskawa matrix unitarity.
Recently, the first ever lattice computation of the $gamma W$-box radiative correction to the rate of the semileptonic pion decay allowed for a reduction of the theory uncertainty of that rate by a factor of $sim3$. A recent dispersion evaluation of the $gamma W$-box correction on the neutron also led to a significant reduction of the theory uncertainty, but shifted the value of $V_{ud}$ extracted from the neutron and superallowed nuclear $beta$ decay, resulting in a deficit of the CKM unitarity in the top row. A direct lattice computation of the $gamma W$-box correction for the neutron decay would provide an independent cross-check for this result but is very challenging. Before those challenges are overcome, we propose a hybrid analysis, converting the lattice calculation on the pion to that on the neutron by a combination of dispersion theory and phenomenological input. The new prediction for the universal radiative correction to free and bound neutron $beta$-decay reads $Delta_R^V=0.02477(24)$, in excellent agreement with the dispersion theory result $Delta_R^V=0.02467(22)$. Combining with other relevant information, the top-row CKM unitarity deficit persists.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا