ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting the low-energy constant $L_0^r$ at three flavors from pion-kaon scattering

344   0   0.0 ( 0 )
 نشر من قبل Ulf-G. Mei{\\ss}ner
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on our analysis of the contributions from the connected and disconnected contraction diagrams to the pion-kaon scattering amplitude, we provide the first determination of the low-energy constant $L_0^r$ in SU$(4|1)$ Partially-Quenched Chiral Perturbation Theory from data of the Extended Twisted Mass Collaboration, $L_0^r = 0.51(26)cdot 10^{-3}$ at $mu=1$ GeV.

قيم البحث

اقرأ أيضاً

We present an extraction of the pion-nucleon ($pi N$) scattering lengths from low-energy $pi N$ scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scatteri ng-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large $pi N$ $sigma$-term, $sigma_{pi N}=58(5)$ MeV, in agreement with, albeit less precise than, the determination from pionic atoms.
We study the contributions from the connected and disconnected contraction diagrams to the pion-kaon scattering amplitude within the framework of SU$(4|1)$ partially-quenched chiral perturbation theory. Combining this with a finite-volume analysis, w e demonstrate that a lattice calculation of the easier computable connected correlation functions is able to provide valuable information of the noisier disconnected correlation functions, and may serve as a theory guidance for the future refinement of the corresponding lattice techniques.
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 l attice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.
We present a lattice-QCD calculation of the pion, kaon and $eta_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HIS Q), generated by MILC collaboration, at 310 MeV pion mass with 0.06, 0.09 and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and extrapolated to the continuum. We use two approaches to extract the $x$-dependence of the meson distribution amplitudes: 1) we fit the renormalized matrix elements in coordinate space to an assumed distribution form through a one-loop matching kernel; 2) we use a machine-learning algorithm trained on pseudo lattice-QCD data to make predictions on the lattice data. We found the results are consistent between these methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader distribution than predicted by light-front constituent-quark model, and the moments of our pion distributions agree with previous lattice-QCD results using the operator production expansion.
Luschers method is routinely used to determine meson-meson, meson-baryon and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase-shifts describing meson-meson scattering in partial-waves with angular-momentum l<=6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase-shifts from Lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial-waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا