ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - R. Kanishka 2015
The magnetized Iron CALorimeter detector (ICAL) which is proposed to be built in the India-based Neutrino Observatory (INO) laboratory, aims to study atmospheric neutrino oscillations primarily through charged current interactions of muon neutrinos a nd anti-neutrinos with the detector. The response of muons and charge identification efficiency, angle and energy resolution as a function of muon momentum and direction are studied from GEANT4-based simulations in the peripheral regions of the detector. This completes the characterisation of ICAL with respect to muons over the entire detector and has implications for the sensitivity of ICAL to the oscillation parameters and mass hierarchy compared to the studies where only the resolutions and efficiencies of the central region of ICAL were assumed for the entire detector. Selection criteria for track reconstruction in the peripheral region of the detector were determined from the detector response. On applying these, for the 1--20 GeV energy region of interest for mass hierarchy studies, an average angle-dependent momentum resolution of 15--24%, reconstruction efficiency of about 60--70% and a correct charge identification of about 97% of the reconstructed muons were obtained. In addition, muon response at higher energies upto 50 GeV was studied as relevant for understanding the response to so-called rock muons and cosmic ray muons. An angular resolution of better than a degree for muon energies greater than 4 GeV was obtained in the peripheral regions, which is the same as that in the central region.
Web service choreographies specify conditions on observable interactions among the services. An important question in this regard is realizability: given a choreography C, does there exist a set of service implementations I that conform to C ? Furthe r, if C is realizable, is there an algorithm to construct implementations in I ? We propose a local temporal logic in which choreographies can be specified, and for specifications in the logic, we solve the realizability problem by constructing service implementations (when they exist) as communicating automata. These are nondeterministic finite state automata with a coupling relation. We also report on an implementation of the realizability algorithm and discuss experimental results.
127 - H. Saveetha 2013
A detailed study of fragmentation of vector mesons at the next-to-leading order (NLO) is given for e^+ e^- scattering. A model with broken SU(3) symmetry uses three input fragmentation functions alpha(x, Q^2), beta(x,Q^2) and gamma(x,Q^2) and a stran geness suppression parameter lambda to describe all the light quark fragmentation functions for the entire vector meson octet. At a starting low energy scale of Q_0^2 = 1.5 GeV^2 for three light quarks (u, d, s) along with initial parameterization, the fragmentation functions are evolved through DGLAP evolution equations at NLO and the cross-section is calculated. The heavy quarks contribution are added in appropriate thresholds during evolution. The results obtained are fitted at the momentum scale of sqrt{s}= 91.2 GeV for LEP and SLD data. Good-quality fits are obtained for rho, K^*, omega and phi mesons, implying the consistency and efficiency of this model that explains the fragmentation functions of vector mesons both at the leading and the next to leading order in QCD. Keywords: vector meson, fragmentation, SU(3) symmetry, NLO .
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reac hed for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.
Inclusive hadro production in e^+ e^- annihilation processes is examined to study the fragmentation process. A broken SU(3) model is used to determine the quark and gluon fragmentation functions of octet vector mesons, rho and K^*, in a simple way wi th an SU(3) breaking parameter lambda. These are expressed in terms of just two light quark fragmentation functions, V(x, Q2) and gamma(x, Q2) and the gluon fragmentation function Dg(x, Q2). These functions are parameterized at the low input scale of Q0^2 = 1.5 GeV2, evolved through LO DGLAP evolution including charm and bottom flavour at appropriate thresholds, and fitted by comparison with data at the Z-pole. The model is extended with the introduction of a few additional parameters to include a study of singlet--octet mixing and hence omega and phi fragmentation. The model gives good fits to the available data for x >~ 0.01, where x is the scaled energy of the hadron. The model is then applied successfully to omega, phi production in pp collisions at the Relativistic Heavy Ion Collider, RHIC; these data form an important base-line for the study of Quark Gluon Plasma in heavy nucleus collisions at RHIC, and also in future at the LHC.
We study the effect of a large magnetic field on the chiral and diquark condensates in a regime of moderately dense quark matter. Our focus is on the inter-dependence of the two condensates through non-perturbative quark mass and strong coupling effe cts, which we address in a 2-flavor Nambu-Jona-Lasinio (NJL) model. For magnetic fields $eBlesssim 0.01$ GeV$^2$ (corresponding to $Blesssim 10^{18}$G), our results agree qualitatively with the zero-field study of Huang et al., who found a mixed broken phase region where the chiral and superconducting gap are both non-zero. For $eBgtrsim 0.01$ GeV$^2$ and moderate diquark-to-scalar coupling ratio $G_D/G_S$, we find that the chiral and superconducting transitions become weaker but with little change in either transition density. For large $G_D/G_S$ however, such a large magnetic field disrupts the mixed broken phase region and changes a smooth crossover found in the zero-field case to a first-order transition at neutron star interior densities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا