ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimum Uncertainty and Entanglement

149   0   0.0 ( 0 )
 نشر من قبل Tabish Qureshi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.



قيم البحث

اقرأ أيضاً

63 - T. Koide 2021
A minimum uncertainty state for position and momentum is obtained in quantum viscous hydrodynamics which is defined through the Navier-Stokes-Korteweg (NSK) equation. This state is the generalization of the coherent state and its uncertainty is given by a function of the coefficient of viscosity. The uncertainty can be smaller than the standard minimum value in quantum mechanics, $hbar/2$, when the coefficient of viscosity is smaller than a critical value which is similar in magnitude to the Kovtun-Son-Starinets (KSS) bound.
The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr l-Lieb inequality is closer to equality than the usual Bia{l}ynicki-Birula and Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how a Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy.
229 - C. Gabriel , J. Janousek , 2009
Squeezing experiments which are capable of creating a minimum uncertainty state during the nonlinear process, for example optical parametric amplification, are commonly used to produce light far below the quantum noise limit. This report presents a m ethod with which one can characterize this minimum uncertainty state and gain valuable knowledge of the experimental setup.
We formulate an entanglement criterion using Peres-Horodecki positive partial transpose operations combined with the Schrodinger-Robertson uncertainty relation. We show that any pure entangled bipartite and tripartite state can be detected by experim entally measuring mean values and variances of specific observables. Those observables must satisfy a specific condition in order to be used, and we show their general form in the $2times 2$ (two qubits) dimension case. The criterion is applied on a variety of physical systems including bipartite and multipartite mixed states and reveals itself to be stronger than the Bell inequalities and other criteria. The criterion also work on continuous variable cat states and angular momentum states of the radiation field.
We present a unified view of the Berry phase of a quantum system and its entanglement with surroundings. The former reflects the nonseparability between a system and a classical environment as the latter for a quantum environment, and the concept of geometric time-energy uncertainty can be adopted as a signature of the nonseparability. Based on this viewpoint, we study their relationship in the quantum-classical transition of the environment, with the aid of a spin-half particle (qubit) model exposed to a quantum-classical hybrid field. In the quantum-classical transition, the Berry phase has a similar connection with the time-energy uncertainty as the case with only a classical field, whereas the geometric phase for the mixed state of the qubit exhibits a complementary relationship with the entanglement. Namely, for a fixed time-energy uncertainty, the entanglement is gradually replaced by the mixed geometric phase as the quantum field vanishes. And the mixed geometric phase becomes the Berry phase in the classical limit. The same results can be draw out from a displaced harmonic oscillator model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا