ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning partly due to their interpretability through the prism of the established graph signal processing framework. However, existing SG CNs are limited in implementing graph convolutions with rigid transforms that could not adapt to signals residing on graphs and tasks at hand. In this paper, we propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets. Specifically, the adaptive graph wavelets are learned with neural network-parameterized lifting structures, where structure-aware attention-based lifting operations are developed to jointly consider graph structures and node features. We propose to lift based on diffusion wavelets to alleviate the structural information loss induced by partitioning non-bipartite graphs. By design, the locality and sparsity of the resulting wavelet transform as well as the scalability of the lifting structure for large and varying-size graphs are guaranteed. We further derive a soft-thresholding filtering operation by learning sparse graph representations in terms of the learned wavelets, which improves the scalability and interpretablity, and yield a localized, efficient and scalable spectral graph convolution. To ensure that the learned graph representations are invariant to node permutations, a layer is employed at the input of the networks to reorder the nodes according to their local topology information. We evaluate the proposed networks in both node-level and graph-level representation learning tasks on benchmark citation and bioinformatics graph datasets. Extensive experiments demonstrate the superiority of the proposed networks over existing SGCNs in terms of accuracy, efficiency and scalability.
Graph convolution networks, like message passing graph convolution networks (MPGCNs), have been a powerful tool in representation learning of networked data. However, when data is heterogeneous, most architectures are limited as they employ a single strategy to handle multi-channel graph signals and they typically focus on low-frequency information. In this paper, we present a novel graph convolution operator, termed BankGCN, which keeps benefits of message passing models, but extends their capabilities beyond `low-pass features. It decomposes multi-channel signals on graphs into subspaces and handles particular information in each subspace with an adapted filter. The filters of all subspaces have different frequency responses and together form a filter bank. Furthermore, each filter in the spectral domain corresponds to a message passing scheme, and diverse schemes are implemented via the filter bank. Importantly, the filter bank and the signal decomposition are jointly learned to adapt to the spectral characteristics of data and to target applications. Furthermore, this is implemented almost without extra parameters in comparison with most existing MPGCNs. Experimental results show that the proposed convolution operator permits to achieve excellent performance in graph classification on a collection of benchmark graph datasets.
Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labele d activity data, which are hard to obtain. In this paper, we design a similarity embedding neural network that maps input sensor signals onto real vectors through carefully designed convolutional and LSTM layers. The embedding network is trained with a pairwise similarity loss, encouraging the clustering of samples from the same class in the embedded real space, and can be effectively trained on a small dataset and even on a noisy dataset with mislabeled samples. Based on the learned embeddings, we further propose both nonparametric and parametric approaches for activity recognition. Extensive evaluation based on two public datasets has shown that the proposed similarity embedding network significantly outperforms state-of-the-art deep models on HAR classification tasks, is robust to mislabeled samples in the training set, and can also be used to effectively denoise a noisy dataset.
95 - Chenglin Li , Di Niu , Bei Jiang 2021
Human activity recognition (HAR) based on mobile sensors plays an important role in ubiquitous computing. However, the rise of data regulatory constraints precludes collecting private and labeled signal data from personal devices at scale. Federated learning has emerged as a decentralized alternative solution to model training, which iteratively aggregates locally updated models into a shared global model, therefore being able to leverage decentralized, private data without central collection. However, the effectiveness of federated learning for HAR is affected by the fact that each user has different activity types and even a different signal distribution for the same activity type. Furthermore, it is uncertain if a single global model trained can generalize well to individual users or new users with heterogeneous data. In this paper, we propose Meta-HAR, a federated representation learning framework, in which a signal embedding network is meta-learned in a federated manner, while the learned signal representations are further fed into a personalized classification network at each user for activity prediction. In order to boost the representation ability of the embedding network, we treat the HAR problem at each user as a different task and train the shared embedding network through a Model-Agnostic Meta-learning framework, such that the embedding network can generalize to any individual user. Personalization is further achieved on top of the robustly learned representations in an adaptation procedure. We conducted extensive experiments based on two publicly available HAR datasets as well as a newly created HAR dataset. Results verify that Meta-HAR is effective at maintaining high test accuracies for individual users, including new users, and significantly outperforms several baselines, including Federated Averaging, Reptile and even centralized learning in certain cases.
Message passing has evolved as an effective tool for designing Graph Neural Networks (GNNs). However, most existing works naively sum or average all the neighboring features to update node representations, which suffers from the following limitations : (1) lack of interpretability to identify crucial node features for GNNs prediction; (2) over-smoothing issue where repeated averaging aggregates excessive noise, making features of nodes in different classes over-mixed and thus indistinguishable. In this paper, we propose the Node-level Capsule Graph Neural Network (NCGNN) to address these issues with an improved message passing scheme. Specifically, NCGNN represents nodes as groups of capsules, in which each capsule extracts distinctive features of its corresponding node. For each node-level capsule, a novel dynamic routing procedure is developed to adaptively select appropriate capsules for aggregation from a subgraph identified by the designed graph filter. Consequently, as only the advantageous capsules are aggregated and harmful noise is restrained, over-mixing features of interacting nodes in different classes tends to be avoided to relieve the over-smoothing issue. Furthermore, since the graph filter and the dynamic routing identify a subgraph and a subset of node features that are most influential for the prediction of the model, NCGNN is inherently interpretable and exempt from complex post-hoc explanations. Extensive experiments on six node classification benchmarks demonstrate that NCGNN can well address the over-smoothing issue and outperforms the state of the arts by producing better node embeddings for classification.
Substantial experiments have validated the success of Batch Normalization (BN) Layer in benefiting convergence and generalization. However, BN requires extra memory and float-point calculation. Moreover, BN would be inaccurate on micro-batch, as it d epends on batch statistics. In this paper, we address these problems by simplifying BN regularization while keeping two fundamental impacts of BN layers, i.e., data decorrelation and adaptive learning rate. We propose a novel normalization method, named MimicNorm, to improve the convergence and efficiency in network training. MimicNorm consists of only two light operations, including modified weight mean operations (subtract mean values from weight parameter tensor) and one BN layer before loss function (last BN layer). We leverage the neural tangent kernel (NTK) theory to prove that our weight mean operation whitens activations and transits network into the chaotic regime like BN layer, and consequently, leads to an enhanced convergence. The last BN layer provides autotuned learning rates and also improves accuracy. Experimental results show that MimicNorm achieves similar accuracy for various network structures, including ResNets and lightweight networks like ShuffleNet, with a reduction of about 20% memory consumption. The code is publicly available at https://github.com/Kid-key/MimicNorm.
Graph neural networks have attracted wide attentions to enable representation learning of graph data in recent works. In complement to graph convolution operators, graph pooling is crucial for extracting hierarchical representation of graph data. How ever, most recent graph pooling methods still fail to efficiently exploit the geometry of graph data. In this paper, we propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology. Node proximity is obtained by harmonizing the kernel representation of topology information and node features. Implicit structure-aware kernel representation of topology information allows efficient graph pooling without explicit eigendecomposition of the graph Laplacian. Similarities of node signals are adaptively evaluated with the combination of the affine transformation and kernel trick using the Gaussian RBF function. Experimental results demonstrate that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
In this paper, we study the server-side rate adaptation problem for streaming tile-based adaptive 360-degree videos to multiple users who are competing for transmission resources at the network bottleneck. Specifically, we develop a convolutional neu ral network (CNN)-based viewpoint prediction model to capture the nonlinear relationship between the future and historical viewpoints. A Laplace distribution model is utilized to characterize the probability distribution of the prediction error. Given the predicted viewpoint, we then map the viewport in the spherical space into its corresponding planar projection in the 2-D plane, and further derive the visibility probability of each tile based on the planar projection and the prediction error probability. According to the visibility probability, tiles are classified as viewport, marginal and invisible tiles. The server-side tile rate allocation problem for multiple users is then formulated as a non-linear discrete optimization problem to minimize the overall received video distortion of all users and the quality difference between the viewport and marginal tiles of each user, subject to the transmission capacity constraints and users specific viewport requirements. We develop a steepest descent algorithm to solve this non-linear discrete optimization problem, by initializing the feasible starting point in accordance with the optimal solution of its continuous relaxation. Extensive experimental results show that the proposed algorithm can achieve a near-optimal solution, and outperforms the existing rate adaptation schemes for tile-based adaptive 360-video streaming.
208 - Rui Zhu , Chenglin Li , Di Niu 2018
With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, which calls for the development of advanced and effective malware detection approaches. Traditional methods such as signature-based ones cannot defend users from an increasing number of new types of malware or rapid malware behavior changes. In this paper, we propose a new Android malware detection approach based on deep learning and static analysis. Instead of using Application Programming Interfaces (APIs) only, we further analyze the source code of Android applications and create their higher-level graphical semantics, which makes it harder for attackers to evade detection. In particular, we use a call graph from method invocations in an Android application to represent the application, and further analyze method attributes to form a structured Program Representation Graph (PRG) with node attributes. Then, we use a graph convolutional network (GCN) to yield a graph representation of the application by embedding the entire graph into a dense vector, and classify whether it is a malware or not. To efficiently train such a graph convolutional network, we propose a batch training scheme that allows multiple heterogeneous graphs to be input as a batch. To the best of our knowledge, this is the first work to use graph representation learning for malware detection. We conduct extensive experiments from real-world sample collections and demonstrate that our developed system outperforms multiple other existing malware detection techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا