ترغب بنشر مسار تعليمي؟ اضغط هنا

The Large Area Multi-Object Spectroscopic Telescope (LAMOST) is a dedicated spectroscopic survey telescope being built in China, with an effective aperture of 4 meters and equiped with 4000 fibers. Using the LAMOST telescope, one could make redshift survey of the large scale structure (LSS). The baryon acoustic oscillation (BAO) features in the LSS power spectrum provide standard rulers for measuring dark energy and other cosmological parameters. In this paper we investigate the meaurement precision achievable for a few possible surveys: (1) a magnitude limited survey of all galaxies, (2) a survey of color selected red luminous galaxies (LRG), and (3) a magnitude limited, high density survey of z<2 quasars. For each survey, we use the halo model to estimate the bias of the sample, and calculate the effective volume. We then use the Fisher matrix method to forecast the error on the dark energy equation of state and other cosmological parameters for different survey parameters. In a few cases we also use the Markov Chain Monte Carlo (MCMC) method to make the same forecast as a comparison. The fiber time required for each of these surveys is also estimated. These results would be useful in designing the surveys for LAMOST.
This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, comp lementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا