ترغب بنشر مسار تعليمي؟ اضغط هنا

The N=2* Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N) gauge group in this theory and sh ow that the same phenomenon that causes the phase transitions at finite coupling leads to a non-analytic dependence of Wilson loops on k/N when the coupling is strictly infinite, thus making the higher-representation Wilson loops ideal holographic probes of the non-trivial phase structure of SYM*.
We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC which mutually influences the ferromagnetism in SiC.
64 - Chinping Chen , Lin He , Lin Lai 2008
Fine powders of micron- and submicron-sized particles of undoped Cu2O semiconductor, with three different sizes and morphologies have been synthesized by different chemical processes. These samples include nanospheres 200 nm in diameter, octahedra of size 1 micron, and polyhedra of size 800 nm. They exhibit a wide spectrum of magnetic properties. At low temperature, T = 5 K, the octahedron sample is diamagnetic. The nanosphere is paramagnetic. The other two polyhedron samples synthesized in different runs by the same process are found to show different magnetic properties. One of them exhibits weak ferromagnetism with T_C = 455 K and saturation magnetization, M_S = 0.19 emu/g at T = 5 K, while the other is paramagnetic. The total magnetic moment estimated from the detected impurity concentration of Fe, Co, and Ni, is too small to account for the observed magnetism by one to two orders of magnitude. Calculations by the density functional theory (DFT) reveal that cation vacancies in the Cu2O lattice are one of the possible causes of induced magnetic moments. The results further predict that the defect-induced magnetic moments favour a ferromagnetically coupled ground state if the local concentration of cation vacancies, n_C, exceeds 12.5%. This offers a possible scenario to explain the observed magnetic properties. The limitations of the investigations in the present work, in particular in the theoretical calculations, are discussed and possible areas for further study are suggested.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا