ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulate d control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time,real world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn; as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.
Few-shot meta-learning methods consider the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks. However, in many real world settings, it is more natural to view the p roblem as one of minimizing the total amount of supervision --- both the number of examples needed to learn a new task and the amount of data needed for meta-learning. Such a formulation can be studied in a sequential learning setting, where tasks are presented in sequence. When studying meta-learning in this online setting, a critical question arises: can meta-learning improve over the sample complexity and regret of standard empirical risk minimization methods, when considering both meta-training and adaptation together? The answer is particularly non-obvious for meta-learning algorithms with complex bi-level optimizations that may demand large amounts of meta-training data. To answer this question, we extend previous meta-learning algorithms to handle the variable-shot settings that naturally arise in sequential learning: from many-shot learning at the start, to zero-shot learning towards the end. On sequential learning problems, we find that meta-learning solves the full task set with fewer overall labels and achieves greater cumulative performance, compared to standard supervised methods. These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
Reinforcement learning has the potential to automate the acquisition of behavior in complex settings, but in order for it to be successfully deployed, a number of practical challenges must be addressed. First, in real world settings, when an agent at tempts a task and fails, the environment must somehow reset so that the agent can attempt the task again. While easy in simulation, this could require considerable human effort in the real world, especially if the number of trials is very large. Second, real world learning often involves complex, temporally extended behavior that is often difficult to acquire with random exploration. While these two problems may at first appear unrelated, in this work, we show how a single method can allow an agent to acquire skills with minimal supervision while removing the need for resets. We do this by exploiting the insight that the need to reset an agent to a broad set of initial states for a learning task provides a natural setting to learn a diverse set of reset-skills. We propose a general-sum game formulation that balances the objectives of resetting and learning skills, and demonstrate that this approach improves performance on reset-free tasks, and additionally show that the skills we obtain can be used to significantly accelerate downstream learning.
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous, imperiling the RL agent, other agents, and the environment. To overcome this difficulty, we propose a safety-critical adaptation task setting: an agent first trains in non-safety-critical source environments such as in a simulator, before it adapts to the target environment where failures carry heavy costs. We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk, which in turn enables relative safety through risk-averse, cautious adaptation. CARL first employs model-based RL to train a probabilistic model to capture uncertainty about transition dynamics and catastrophic states across varied source environments. Then, when exploring a new safety-critical environment with unknown dynamics, the CARL agent plans to avoid actions that could lead to catastrophic states. In experiments on car driving, cartpole balancing, half-cheetah locomotion, and robotic object manipulation, CARL successfully acquires cautious exploration behaviors, yielding higher rewards with fewer failures than strong RL adaptation baselines. Website at https://sites.google.com/berkeley.edu/carl.
Many successful deep learning architectures are equivariant to certain transformations in order to conserve parameters and improve generalization: most famously, convolution layers are equivariant to shifts of the input. This approach only works when practitioners know the symmetries of the task and can manually construct an architecture with the corresponding equivariances. Our goal is an approach for learning equivariances from data, without needing to design custom task-specific architectures. We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data. Our method can provably represent equivariance-inducing parameter sharing for any finite group of symmetry transformations. Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks. We provide our experiment code at https://github.com/AllanYangZhou/metalearning-symmetries.
Reinforcement learning algorithms can acquire policies for complex tasks autonomously. However, the number of samples required to learn a diverse set of skills can be prohibitively large. While meta-reinforcement learning methods have enabled agents to leverage prior experience to adapt quickly to new tasks, their performance depends crucially on how close the new task is to the previously experienced tasks. Current approaches are either not able to extrapolate well, or can do so at the expense of requiring extremely large amounts of data for on-policy meta-training. In this work, we present model identification and experience relabeling (MIER), a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time. Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data, more easily than policies and value functions. These dynamics models can then be used to continue training policies and value functions for out-of-distribution tasks without using meta-reinforcement learning at all, by generating synthetic experience for the new task.
Meta-learning is a promising strategy for learning to efficiently learn within new tasks, using data gathered from a distribution of tasks. However, the meta-learning literature thus far has focused on the task segmented setting, where at train-time, offline data is assumed to be split according to the underlying task, and at test-time, the algorithms are optimized to learn in a single task. In this work, we enable the application of generic meta-learning algorithms to settings where this task segmentation is unavailable, such as continual online learning with a time-varying task. We present meta-learning via online changepoint analysis (MOCA), an approach which augments a meta-learning algorithm with a differentiable Bayesian changepoint detection scheme. The framework allows both training and testing directly on time series data without segmenting it into discrete tasks. We demonstrate the utility of this approach on a nonlinear meta-regression benchmark as well as two meta-image-classification benchmarks.
Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains. We present a deep RL method that is practical for real-world robotics tasks, such as robotic manipulation, and generalizes effectively to never-before-seen tasks and objects. In these settings, ground truth reward signals are typically unavailable, and we therefore propose a self-supervised model-based approach, where a predictive model learns to directly predict the future from raw sensory readings, such as camera images. At test time, we explore three distinct goal specification methods: designated pixels, where a user specifies desired object manipulation tasks by selecting particular pixels in an image and corresponding goal positions, goal images, where the desired goal state is specified with an image, and image classifiers, which define spaces of goal states. Our deep predictive models are trained using data collected autonomously and continuously by a robot interacting with hundreds of objects, without human supervision. We demonstrate that visual MPC can generalize to never-before-seen objects---both rigid and deformable---and solve a range of user-defined object manipulation tasks using the same model.
A longstanding challenge in robot learning for manipulation tasks has been the ability to generalize to varying initial conditions, diverse objects, and changing objectives. Learning based approaches have shown promise in producing robust policies, b ut require heavy supervision to efficiently learn precise control, especially from visual inputs. We propose a novel self-supervision technique that uses time-reversal to learn goals and provide a high level plan to reach them. In particular, we introduce the time-reversal model (TRM), a self-supervised model which explores outward from a set of goal states and learns to predict these trajectories in reverse. This provides a high level plan towards goals, allowing us to learn complex manipulation tasks with no demonstrations or exploration at test time. We test our method on the domain of assembly, specifically the mating of tetris-style block pairs. Using our method operating atop visual model predictive control, we are able to assemble tetris blocks on a physical robot using only uncalibrated RGB camera input, and generalize to unseen block pairs. sites.google.com/view/time-reversal
Meta-learning for few-shot learning entails acquiring a prior over previous tasks and experiences, such that new tasks be learned from small amounts of data. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful p rior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be too ambiguous to acquire a single model (e.g., a classifier) for that task that is accurate. In this paper, we propose a probabilistic meta-learning algorithm that can sample models for a new task from a model distribution. Our approach extends model-agnostic meta-learning, which adapts to new tasks via gradient descent, to incorporate a parameter distribution that is trained via a variational lower bound. At meta-test time, our algorithm adapts via a simple procedure that injects noise into gradient descent, and at meta-training time, the model is trained such that this stochastic adaptation procedure produces samples from the approximate model posterior. Our experimental results show that our method can sample plausible classifiers and regressors in ambiguous few-shot learning problems. We also show how reasoning about ambiguity can also be used for downstream active learning problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا