ترغب بنشر مسار تعليمي؟ اضغط هنا

Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise (>100) stacked spectra with minimal emission line contamination, we accurately and precisely model the central stellar populations of barre d and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02<z<0.04, the SDSS fiber radius corresponds to ~1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred vs. unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z=0.020 to z=0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this ~1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred vs. unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies.
We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to $zsim5$. Measured star formation histories (SFHs) from the fossil record of Local Group galaxies are used to reconstruct the LF down to M$_{UV}sim-5$ at $zsim5$ and M$_{UV}sim-1.5$ at $z<1$. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, are well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint end slope, $alpha$, steepens from $approx-1.2$ at $z<1$ to $approx-1.6$ at $4<z<5$. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest Local Group galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high redshift faint galaxies believed to play a key role in the reionization of the Universe.
We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the effica cy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, red and dead galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.
74 - Mariska Kriek 2013
This letter utilizes composite spectral energy distributions (SEDs) constructed from NEWFIRM Medium-Band Survey photometry to constrain the dust attenuation curve in 0.5<z<2.0 galaxies. Based on similarities between the full SED shapes (0.3-8 micron) , we have divided galaxies in 32 different spectral classes and stacked their photometry. As each class contains galaxies over a range in redshift, the resulting rest-frame SEDs are well-sampled in wavelength and show various spectral features including Halpha and the UV dust bump at 2175 Angstrom. We fit all composite SEDs with flexible stellar population synthesis models, while exploring attenuation curves with varying slopes and UV bump strengths. The Milky Way and Calzetti law provide poor fits at UV wavelengths for nearly all SEDs. Consistent with previous studies, we find that the best-fit attenuation law varies with spectral type. There is a strong correlation between the best-fit dust slope and UV bump strength, with steeper laws having stronger bumps. Moreover, the attenuation curve correlates with specific star formation rate (SFR), with more active galaxies having shallower dust curves and weaker bumps. There is also a weak correlation with inclination. The observed trends can be explained by differences in the dust-to-star geometry, a varying grain size distribution, or a combination of both. Our results have several implications for galaxy evolution studies. First, the assumption of a universal dust model leads to biases in derived galaxy properties. Second, the presence of a dust bump may result in underestimated values for the UV slope, used to correct SFRs of distant galaxies.
Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of alterin g their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass - halo mass (M* -Mh) relation for these two populations over the redshift interval 0 < z < 1. This relation for central galaxies is constrained by the galaxy stellar mass function while the relation for satellite galaxies is constrained against recent measurements of the galaxy two-point correlation function (2PCF). At z ~ 0 the satellites, on average, have ~10% larger stellar masses at fixed peak subhalo mass compared to central galaxies of the same halo mass. This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ~1 Mpc scales. At z ~ 1 the satellite and central galaxy M*-Mh relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ~ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M*-Mh relation is able to reproduce the extant z ~ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M*-Mh relations since z ~ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. [Abridged]
Using reconstructed galaxy star formation histories, we calculate the instantaneous efficiency of galaxy star formation (i.e., the star formation rate divided by the baryon accretion rate) from $z=8$ to the present day. This efficiency exhibits a cle ar peak near a characteristic halo mass of 10^11.7 Msun, which coincides with longstanding theoretical predictions for the mass scale relevant to virial shock heating of accreted gas. Above the characteristic halo mass, the efficiency falls off as the mass to the minus four-thirds power; below the characteristic mass, the efficiency falls off at an average scaling of mass to the two-thirds power. By comparison, the shape and normalization of the efficiency change very little since z=4. We show that a time-independent star formation efficiency simply explains the shape of the cosmic star formation rate since z=4 in terms of dark matter accretion rates. The rise in the cosmic star formation from early times until z=2 is especially sensitive to galaxy formation efficiency. The mass dependence of the efficiency strongly limits where most star formation occurs, with the result that two-thirds of all star formation has occurred inside halos within a factor of three of the characteristic mass, a range that includes the mass of the Milky Way.
We present a robust method to constrain average galaxy star formation rates, star formation histories, and the intracluster light as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star format ion rates, and cosmic star formation rates from z=0 to z=8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, star formation rates, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z=8. We also provide new compilations of cosmic and specific star formation rates; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10^12 Msun are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for star formation histories that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the star formation history of galaxies into a self-consistent framework based on the modern understanding of structure formation in LCDM. Constraints on the stellar mass-halo mass relationship and star formation rates are available for download at http://www.peterbehroozi.com/data.html .
166 - Aaron A. Dutton 2010
We investigate the origin of the relations between stellar mass and optical circular velocity for early-type (ETG) and late-type (LTG) galaxies --- the Faber-Jackson (FJ) and Tully-Fisher (TF) relations. We combine measurements of dark halo masses (f rom satellite kinematics and weak lensing), and the distribution of baryons in galaxies (from a new compilation of galaxy scaling relations), with constraints on dark halo structure from cosmological simulations. The principle unknowns are the halo response to galaxy formation and the stellar initial mass function (IMF). The slopes of the TF and FJ relations are naturally reproduced for a wide range of halo response and IMFs. However, models with a universal IMF and universal halo response cannot simultaneously reproduce the zero points of both the TF and FJ relations. For a model with a universal Chabrier IMF, LTGs require halo expansion, while ETGs require halo contraction. A Salpeter IMF is permitted for high mass (sigma > 180 km/s) ETGs, but is inconsistent for intermediate masses, unless V_circ(R_e)/sigma_e > 1.6. If the IMF is universal and close to Chabrier, we speculate that the presence of a major merger may be responsible for the contraction in ETGs while clumpy accreting streams and/or feedback leads to expansion in LTGs. Alternatively, a recently proposed variation in the IMF disfavors halo contraction in both types of galaxies. Finally we show that our models naturally reproduce flat and featureless circular velocity profiles within the optical regions of galaxies without fine-tuning.
89 - Aaron A. Dutton 2010
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_ 200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا