ترغب بنشر مسار تعليمي؟ اضغط هنا

We study how AGN activity changes across environments from galaxy pairs to clusters using $143, 843$ galaxies with $z<0.2$ from the Sloan Digital Sky Survey (SDSS). Using a refined technique, we apply a continuous measure of AGN activity, characteris tic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([NII]$lambda6548$/H$alpha$, [OIII]$lambda5007$/H$beta$) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.
Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) observations on the 1.8 deg$^2$ Cosmological Evolution Survey (COSMOS) we estimate the masses and star formation rates of 3398 $M_*>10^{10}M_odot $ star-forming galaxies at $4 < z < 6$ with a substantial population up to $M_* gtrsim 10^{11.5} M_odot$. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the main sequence of star-forming galaxies) extends to $zsim6$. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to $z sim 6$ or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.
Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) Main Sequence (MS) in stellar mass and star formation rate (SFR) out to $z sim 6$. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations ($sim 0.1$ dex 1$sigma$ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bins. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is $sim 0.2$ dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best fit $logtextrm{SFR}(M_*,t) = left(0.84 pm 0.02 - 0.026 pm 0.003 times tright) log M_* - left(6.51 pm 0.24 - 0.11 pm 0.03 times tright)$, with $t$ the age of the Universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-$tau$ models, (2) the decline in fractional stellar mass growth for a typical MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial $1sigma$ spread in formation times of $sim 1.4$ Gyr.
We report on the discovery of a Type 1 quasar, SDSS 0956+5128, with a surprising combination of extreme velocity offsets. SDSS 0956+5128 is a broad-lined quasar exhibiting emission lines at three substantially different redshifts: a systemic redshift of z ~ 0.714 based on narrow emission lines, a broad MgII emission line centered 1200 km/s bluer than the systemic velocity, at z ~ 0.707, and broad Halpha and Hbeta emission lines centered at z ~ 0.690. The Balmer line peaks are 4100 km/s bluer than the systemic redshift. There are no previously known objects with such an extreme difference between broad MgII and broad Balmer emission. The two most promising explanations are either an extreme disk emitter or a high-velocity black hole recoil. However, neither explanation appears able to explain all of the observed features of SDSS 0956+5128, so the object may provide a challenge to our general understanding of quasar physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا