ترغب بنشر مسار تعليمي؟ اضغط هنا

A Highly Consistent Framework for the Evolution of the Star-Forming Main Sequence from z~0-6

124   0   0.0 ( 0 )
 نشر من قبل Joshua Speagle
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) Main Sequence (MS) in stellar mass and star formation rate (SFR) out to $z sim 6$. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations ($sim 0.1$ dex 1$sigma$ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bins. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is $sim 0.2$ dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best fit $logtextrm{SFR}(M_*,t) = left(0.84 pm 0.02 - 0.026 pm 0.003 times tright) log M_* - left(6.51 pm 0.24 - 0.11 pm 0.03 times tright)$, with $t$ the age of the Universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-$tau$ models, (2) the decline in fractional stellar mass growth for a typical MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial $1sigma$ spread in formation times of $sim 1.4$ Gyr.



قيم البحث

اقرأ أيضاً

We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4<z<2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the H$alpha$ luminosity of a sample of star-forming galaxies at $1.4<z<1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.
The analytic equilibrium model for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic tim e with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-sigma MS scatter to be ~ 0.2 - 0.25 dex over the stellar mass range 10^8 Mo to 10^11 Mo and a redshift range 0.5 < z < 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z > 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.
We present results on the environmental dependence of the star-forming galaxy main sequence in 11 galaxy cluster fields at $1.0 < z < 1.5$ from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN) survey. We use a homogeneo usly selected sample of field and cluster galaxies whose membership is derived from dynamical analysis. Using [OII]-derived star formation rates (SFRs), we find that cluster galaxies have suppressed SFRs at fixed stellar mass in comparison to their field counterparts by a factor of 1.4 $pm$ 0.1 ($sim3.3sigma$) across the stellar mass range: $9.0 < log(M_{*} /M_{odot}) < 11.2$. We also find that this modest suppression in the cluster galaxy star-forming main sequence is mass and redshift dependent: the difference between cluster and field increases towards lower stellar masses and lower redshift. When comparing the distribution of cluster and field galaxy SFRs to the star-forming main sequence, we find an overall shift towards lower SFRs in the cluster population, and note the absence of a tail of high SFR galaxies as seen in the field. Given this observed suppression in the cluster galaxy star-forming main sequence, we explore the implications for several scenarios such as formation time differences between cluster and field galaxies, and environmentally-induced star formation quenching and associated timescales.
We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This i s achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
We present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition LCO(5-4), where LCO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا