ترغب بنشر مسار تعليمي؟ اضغط هنا

Many tensor-based data completion methods aim to solve image and video in-painting problems. But, all methods were only developed for a single dataset. In most of real applications, we can usually obtain more than one dataset to reflect one phenomeno n, and all the datasets are mutually related in some sense. Thus one question raised whether such the relationship can improve the performance of data completion or not? In the paper, we proposed a novel and efficient method by exploiting the relationship among datasets for multi-video data completion. Numerical results show that the proposed method significantly improve the performance of video in-painting, particularly in the case of very high missing percentage.
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
A new approach is developed to calculate temperature dependent Seebeck coefficient of heavily doped systems by using Boltzmann transport theory and electron density of states (DOS) obtained from density functional calculations. This approach is appli ed to heavily doped La:STO with DOS from tetrahedral method and Fermi energy using Fermi integrals. The calculated Seebeck coefficient agrees with the experimental data nearly quantitatively, which proved the accuracy of this approach. The influence of the Fermi energy and asymmetry of DOS on the Seebeck coefficient is analyzed.
Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometers classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.
The 21-cm anisotropies from the neutral hydrogen distribution prior to the era of reionization is a sensitive probe of primordial non-Gaussianity. Unlike the case with cosmic microwave background, 21-cm anisotropies provide multi-redshift information with frequency selection and is not damped at arcminute angular scales. We discuss the angular trispectrum of the 21-cm background anisotropies and discuss how the trispectrum signal generated by the primordial non-Gaussianity can be measured with the three-to-one correlator and the corresponding angular power spectrum. We also discuss the separation of primordial non-Gaussian information in the trispectrum with that generated by the subsequent non-linear gravitational evolution of the density field. While with the angular bispectrum of 21-cm anisotropies one can limit the second order corrections to the primordial fluctuations below f_NL< 1, using the trispectrum information we suggest that the third order coupling term, f_2 or g_NL, can be constrained to be arounde 10 with future 21-cm observations over the redshift interval of 50 to 100.
We explore the properties of test-particle orbits in bumpy spacetimes - stationary, reflection-symmetric, asymptotically flat solutions of Einstein equations that have a non-Kerr (anomalous) higher-order multipole-moment structure but can be tuned ar bitrarily close to the Kerr metric. Future detectors should observe gravitational waves generated during inspirals of compact objects into supermassive central bodies. If the central body deviates from the Kerr metric, this will manifest itself in the emitted waves. Here, we explore some of the features of orbits in non-Kerr spacetimes that might lead to observable signatures. As a basis for this analysis, we use a family of exact solutions proposed by Manko & Novikov which deviate from the Kerr metric in the quadrupole and higher moments, but we also compare our results to other work in the literature. We examine isolating integrals of the orbits and find that the majority of geodesic orbits have an approximate fourth constant of the motion (in addition to the energy, angular momentum and rest mass) and the resulting orbits are tri-periodic to high precision. We also find that this fourth integral can be lost for certain orbits in some oblately deformed Manko-Novikov spacetimes. However, compact objects will probably not end up on these chaotic orbits in nature. We compute the location of the innermost stable circular orbit (ISCO) and find that the behavior of orbtis near the ISCO can be qualitatively different depending on whether the ISCO is determined by the onset of an instability in the radial or vertical direction. Finally, we compute periapsis and orbital-plane precessions for nearly circular and nearly equatorial orbits in both the strong and weak field, and discuss weak-field precessions for eccentric equatorial orbits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا