ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we present the design of a superconducting, microwave quantum state router which can realize all-to-all couplings among four quantum modules. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules communication modes. We first demonstrate SWAP operations among the four communication modes, with an average full-SWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes coherences. We also demonstrate photon transfer and pairwise entanglement between the modules qubits, and parallel operation of simultaneous SWAP gates across the router. These results can readily be extended to faster and higher fidelity router operations, as well as scaled to support larger networks of quantum modules.
Registration of 3D anatomic structures to their 2D dual fluoroscopic X-ray images is a widely used motion tracking technique. However, deep learning implementation is often impeded by a paucity of medical images and ground truths. In this study, we p roposed a transfer learning strategy for 3D-to-2D registration using deep neural networks trained from an artificial dataset. Digitally reconstructed radiographs (DRRs) and radiographic skull landmarks were automatically created from craniocervical CT data of a female subject. They were used to train a residual network (ResNet) for landmark detection and a cycle generative adversarial network (GAN) to eliminate the style difference between DRRs and actual X-rays. Landmarks on the X-rays experiencing GAN style translation were detected by the ResNet, and were used in triangulation optimization for 3D-to-2D registration of the skull in actual dual-fluoroscope images (with a non-orthogonal setup, point X-ray sources, image distortions, and partially captured skull regions). The registration accuracy was evaluated in multiple scenarios of craniocervical motions. In walking, learning-based registration for the skull had angular/position errors of 3.9 +- 2.1 deg / 4.6 +- 2.2 mm. However, the accuracy was lower during functional neck activity, due to overly small skull regions imaged on the dual fluoroscopic images at end-range positions. The methodology to strategically augment artificial training data can tackle the complicated skull registration scenario, and has potentials to extend to widespread registration scenarios.
We solve a min-max problem in a robust exploratory mean-variance problem with drift uncertainty in this paper. It is verified that robust investors choose the Sharpe ratio with minimal $L^2$ norm in an admissible set. A reinforcement learning framewo rk in the mean-variance problem provides an exploration-exploitation trade-off mechanism; if we additionally consider model uncertainty, the robust strategy essentially weights more on exploitation rather than exploration and thus reflects a more conservative optimization scheme. Finally, we use financial data to backtest the performance of the robust exploratory investment and find that the robust strategy can outperform the purely exploratory strategy and resist the downside risk in a bear market.
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy. To monitor the pandemic trend, existing studies rely on the aggregation of traditional statistical models and epidemic spread theory. In other words, hi storical statistics of COVID-19, as well as the population mobility data, become the essential knowledge for monitoring the pandemic trend. However, these solutions can barely provide precise prediction and satisfactory explanations on the long-term disease surveillance while the ubiquitous social media resources can be the key enabler for solving this problem. For example, serious discussions may occur on social media before and after some breaking events take place. These events, such as marathon and parade, may impact the spread of the virus. To take advantage of the social media data, we propose a novel framework, Social Media enhAnced pandemic suRveillance Technique (SMART), which is composed of two modules: (i) information extraction module to construct heterogeneous knowledge graphs based on the extracted events and relationships among them; (ii) time series prediction module to provide both short-term and long-term forecasts of the confirmed cases and fatality at the state-level in the United States and to discover risk factors for COVID-19 interventions. Extensive experiments show that our method largely outperforms the state-of-the-art baselines by 7.3% and 7.4% in confirmed case/fatality prediction, respectively.
The clinical named entity recognition (CNER) task seeks to locate and classify clinical terminologies into predefined categories, such as diagnostic procedure, disease disorder, severity, medication, medication dosage, and sign symptom. CNER facilita tes the study of side-effect on medications including identification of novel phenomena and human-focused information extraction. Existing approaches in extracting the entities of interests focus on using static word embeddings to represent each word. However, one word can have different interpretations that depend on the context of the sentences. Evidently, static word embeddings are insufficient to integrate the diverse interpretation of a word. To overcome this challenge, the technique of contextualized word embedding has been introduced to better capture the semantic meaning of each word based on its context. Two of these language models, ELMo and Flair, have been widely used in the field of Natural Language Processing to generate the contextualized word embeddings on domain-generic documents. However, these embeddings are usually too general to capture the proximity among vocabularies of specific domains. To facilitate various downstream applications using clinical case reports (CCRs), we pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair) using the clinical-related corpus from the PubMed Central. Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
Our digital world is full of time series and graphs which capture the various aspects of many complex systems. Traditionally, there are respective methods in processing these two different types of data, e.g., Recurrent Neural Network (RNN) and Graph Neural Network (GNN), while in recent years, time series could be mapped to graphs by using the techniques such as Visibility Graph (VG), so that researchers can use graph algorithms to mine the knowledge in time series. Such mapping methods establish a bridge between time series and graphs, and have high potential to facilitate the analysis of various real-world time series. However, the VG method and its variants are just based on fixed rules and thus lack of flexibility, largely limiting their application in reality. In this paper, we propose an Adaptive Visibility Graph (AVG) algorithm that can adaptively map time series into graphs, based on which we further establish an end-to-end classification framework AVGNet, by utilizing GNN model DiffPool as the classifier. We then adopt AVGNet for radio signal modulation classification which is an important task in the field of wireless communication. The simulations validate that AVGNet outperforms a series of advanced deep learning methods, achieving the state-of-the-art performance in this task.
90 - Guanxing Fu , Chao Zhou 2021
We study mean field portfolio games in incomplete markets with random market parameters, where each player is concerned with not only her own wealth but also the relative performance to her competitors. We use the martingale optimality principle appr oach to characterize the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we get the Nash equilibrium in closed form. Moreover, when all the market parameters become time-independent, we revisit the games in [21] and our analysis shows that nonconstant equilibria do not exist in $L^infty$, and the constant equilibrium obtained in [21] is unique in $L^infty$, not only in the space of constant equilibria.
One of the fundamental challenges in nanophotonics is to gain full control over nanoscale optical elements. The precise spatiotemporal arrangement determines their interactions and collective behavior. To this end, DNA nanotechnology is employed as a n unprecedented tool to create nanophotonic devices with excellent spatial addressability and temporal programmability. However, most of the current DNA-assembled nanophotonic devices can only reconfigure among random or very few defined states. Here, we demonstrate a DNA-assembled rotary plasmonic nanoclock. In this system, a rotor gold nanorod can carry out directional and reversible 360 degree rotation with respect to a stator gold nanorod, transitioning among 16 well-defined configurations powered by DNA fuels. The full-turn rotation process is monitored by optical spectroscopy in real time. We further demonstrate autonomous rotation of the plasmonic nanoclock powered by DNAzyme-RNA interactions. Such assembly approaches pave a viable route towards advanced nanophotonic systems entirely from the bottom-up.
The DNA origami technique has empowered a new paradigm in plasmonics for manipulating light and matter at the nanoscale. This interdisciplinary field has witnessed vigorous growth, outlining a viable route to construct advanced plasmonic architecture s with tailored optical properties. However, so far plasmonic systems templated by DNA origami have been restricted to respond to only single stimuli. Despite broad interest and scientific importance, thermal and aptamer-target regulations have not yet been widely utilized to reconfigure three-dimensional plasmonic architectures. In this Letter, we demonstrate a chiral plasmonic nanosystem integrated with split aptamers, which can respond to both thermal and aptamer-target regulations. We show that our dual-responsive system can be noninvasively tuned in a wide range of temperatures, readily correlating thermal control with optical signal changes. Meanwhile, our system can detect specific targets including adenosine triphosphate and cocaine molecules, which further enhance the optical response modulations and in turn influence the thermal tunability.
Sliding is one of the fundamental mechanical movements in machinery. In macroscopic systems, double-rack pinion machines employ gears to slide two linear tracks along opposite directions. In microscopic systems, kinesin-5 proteins crosslink and slide apart antiparallel microtubules, promoting spindle bipolarity and elongation during mitosis. Here we demonstrate an artificial nanoscopic analog, in which gold nanocrystals can mediate coordinated sliding of two antiparallel DNA origami filaments powered by DNA fuels. Stepwise and reversible sliding along opposite directions is in situ monitored and confirmed using fluorescence spectroscopy. A theoretical model including different energy transfer mechanisms is developed to understand the observed fluorescence dynamics. We further show that such sliding can also take place in the presence of multiple DNA sidelocks that are introduced to inhibit the relative movements. Our work enriches the toolbox of DNA-based nanomachinery, taking one step further toward the vision of molecular nanofactories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا