ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new algorithm for multiplying dense polynomials with integer coefficients in a parallel fashion, targeting multi-core processor architectures. Complexity estimates and experimental comparisons demonstrate the advantages of this new approach.
Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bells nonlocality. Among which, Bells nonlocality is the strongest type. Bells nonlocality for quantum states is u sually detected by violation of some Bells inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestation of nonlocality intermediate between entanglement and Bells nonlocality. This peculiar feature has led to a curious quantum phenomenon, the one-way Einstein-Podolsky-Rosen steering. The one-way steering was an important open question presented in 2007, and positively answered in 2014 by Bowles emph{et al.}, who presented a simple class of one-way steerable states in a two-qubit system with at least thirteen projective measurements. The inspiring result for the first time theoretically confirms quantum nonlocality can be fundamentally asymmetric. Here, we propose another curious quantum phenomenon: Bell nonlocal states can be constructed from some steerable states. This novel finding not only offers a distinctive way to study Bells nonlocality without Bells inequality but with steering inequality, but also may avoid locality loophole in Bells tests and make Bells nonlocality easier for demonstration. Furthermore, a nine-setting steering inequality has also been presented for developing more efficient one-way steering and detecting some Bell nonlocal states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا