ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - Chaebin Kim , Heung-Sik Kim , 2021
The realization of Kitaevs honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential r ealizations of fault$-$tolerant quantum computations. Over the past years, much effort was made on 4d$-$ or 5d$-$ heavy transition metal compounds because of their intrinsic strong spin$-$orbit coupling. But more recently, there have been growing shreds of evidence that the Kitaev model could also be realized in 3d$-$transition metal systems with much weaker spin$-$orbit coupling. This review intends to serve as a guide to this fast$-$developing field focusing on systems with d$^7$ transition metal occupation. It overviews the current theoretical and experimental progress on realizing the Kitaev model in those systems. We examine the recent experimental observations of candidate materials with Co$^{2+}$ ions: e.g., CoPS$_3$, Na$_3$Co$_2$SbO$_6$, and Na$_2$Co$_2$TeO$_6$, followed by a brief review of theoretical backgrounds. We conclude this article by comparing experimental observations with density functional theory (DFT) calculations. We stress the importance of inter$-t_{2g}$ hopping channels and Hunds coupling in the realization of Kitaev interactions in Co$-$based compounds, which has been overlooked in previous studies. This review suggests future directions in the search for Kitaev physics in 3d cobalt compounds and beyond.
Finding new materials with antiferromagnetic (AFM) Kitaev interaction is an urgent issue to broaden and enrich the quantum magnetism research significantly. By carrying out inelastic neutron scattering experiments and subsequent analysis, we conclude that Na$_3$Co$_2$SbO$_6$ and Na$_2$Co$_2$TeO$_6$ are new honeycomb cobalt-based AFM Kitaev systems. The spin-orbit excitons at 20-28~meV in both compounds strongly supports the idea that Co$^{2+}$ ions of both compounds have a spin-orbital entangled $J_rm{eff}=1/2$ state. Furthermore, we found that a generalized Kitaev-Heisenberg Hamiltonian can well describe the spin-wave excitations of both compounds with additional 3rd nearest-neighbor interaction. Our best-fit parameters show large AFM Kitaev terms and off-diagonal symmetric anisotropy terms of a similar magnitude in both compounds. We should stress that our parameters optimized magnetic structures are consistent with the magnetic structures reported from neutron diffraction studies. Moreover, there is also the magnon-damping effect at the higher energy part of the spin waves, as usually observed in other Kitaev magnets. We demonstrate that Na$_3$Co$_2$SbO$_6$ and Na$_2$Co$_2$TeO$_6$ are the first experimental realization of AFM Kitaev magnets based on the systematic studies of the spin waves and analysis.
Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeyc omb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTOs quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (vertical to b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.
$Li_{2}RuO_{3}$ with a honeycomb structure undergoes a drastic transition from a regular honeycomb lattice with the $C2/m$ space group to a valence bond solid state of the $P2_{1}/m$ space group with an extremely strong dimerization at 550 K. We synt hesized $Li_{2}Ru_{1-x}Mn_{x}O_{3}$ with a full solid solution and investigated doping effects on the valence bond solid state as a function of Mn content. The valence bond solid state is found to be stable up to $x = 0.2$, based on our extensive experiments: structural studies, resistivity, and magnetic susceptibility. On the other hand, the extended x-ray absorption fine structure analyses show that the dimer local structure remains robust even above $x = 0.2$ with a minimal effect on the dimer bond length. This indicates that the locally-disordered dimer structure survives well into the Mn-rich phase even though the thermodynamically stable average structure has the $C2/m$ space group. Our results prove that the dimer formation in $Li_{2}RuO_{3}$ is predominantly a local phenomenon driven by the formation of orbitally-assisted metal-metal bonds and that these dimers are relatively robust against doping-induced disorder.
The magnetic excitations in CoPS$_3$, a two-dimensional van der Waals (vdW) antiferromagnet with spin $S=3/2$ on a honeycomb lattice, has been measured using powder inelastic neutron scattering. Clear dispersive spin waves are observed with a large s pin gap of ~13 meV. The magnon spectra were fitted using an $XXZ$-type $J_1-J_2-J_3$ Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb layers. The best-fit parameters show ferromagnetic exchange $J_1=-2.08$ meV and $J_2=-0.26$ meV for the nearest and second-nearest neighbors and a sizeable antiferromagnetic exchange $J_3=4.21$ meV for the third-nearest neighbor with the strong easy-axis anisotropy $K=-2.06$ meV. The suitable fitting could only be achieved by the anisotropic $XXZ$-type Hamiltonian, in which the exchange interaction for the out-of-plane component is smaller than that for the in-plane one by a ratio $alpha=J_z/J_x=0.6$. Moreover, the absence of spin-orbit exciton around 30 meV indicates that Co$^{2+}$ ions in CoPS$_3$ have a $S=3/2$ state rather than a spin-orbital entangled $J_rm{eff}=1/2$ ground state. Our result directly shows that CoPS$_3$ is an experimental realization of the $XXZ$ model with a honeycomb lattice in 2D vdW magnets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا