ترغب بنشر مسار تعليمي؟ اضغط هنا

Data analysis requires translating higher level questions and hypotheses into computable statistical models. We present a mixed-methods study aimed at identifying the steps, considerations, and challenges involved in operationalizing hypotheses into statistical models, a process we refer to as hypothesis formalization. In a formative content analysis of research papers, we find that researchers highlight decomposing a hypothesis into sub-hypotheses, selecting proxy variables, and formulating statistical models based on data collection design as key steps. In a lab study, we find that analysts fixated on implementation and shaped their analysis to fit familiar approaches, even if sub-optimal. In an analysis of software tools, we find that tools provide inconsistent, low-level abstractions that may limit the statistical models analysts use to formalize hypotheses. Based on these observations, we characterize hypothesis formalization as a dual-search process balancing conceptual and statistical considerations constrained by data and computation, and discuss implications for future tools.
168 - Ce Ju 2020
The purpose of this paper is to write a complete survey of the (spectral) manifold learning methods and nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR methods in history were respectively published in Science in 2000 in which they solve the similar reduction problem of high-dimensional data endowed with the intrinsic nonlinear structure. The intrinsic nonlinear structure is always interpreted as a concept in manifolds from geometry and topology in theoretical mathematics by computer scientists and theoretical physicists. In 2001, the concept of Manifold Learning first appears as an NLDR method called Laplacian Eigenmaps purposed by Belkin and Niyogi. In the typical manifold learning setup, the data set, also called the observation set, is distributed on or near a low dimensional manifold $M$ embedded in $mathbb{R}^D$, which yields that each observation has a $D$-dimensional representation. The goal of (spectral) manifold learning is to reduce these observations as a compact lower-dimensional representation based on the geometric information. The reduction procedure is called the (spectral) manifold learning method. In this paper, we derive each (spectral) manifold learning method with the matrix and operator representation, and we then discuss the convergence behavior of each method in a geometric uniform language. Hence, we name the survey Geometric Foundations of Data Reduction.
72 - Dashan Gao , Ben Tan , Ce Ju 2020
Matrix Factorization has been very successful in practical recommendation applications and e-commerce. Due to data shortage and stringent regulations, it can be hard to collect sufficient data to build performant recommender systems for a single comp any. Federated learning provides the possibility to bridge the data silos and build machine learning models without compromising privacy and security. Participants sharing common users or items collaboratively build a model over data from all the participants. There have been some works exploring the application of federated learning to recommender systems and the privacy issues in collaborative filtering systems. However, the privacy threats in federated matrix factorization are not studied. In this paper, we categorize federated matrix factorization into three types based on the partition of feature space and analyze privacy threats against each type of federated matrix factorization model. We also discuss privacy-preserving approaches. As far as we are aware, this is the first study of privacy threats of the matrix factorization method in the federated learning framework.
253 - Lixin Fan , Kam Woh Ng , Ce Ju 2020
This paper investigates capabilities of Privacy-Preserving Deep Learning (PPDL) mechanisms against various forms of privacy attacks. First, we propose to quantitatively measure the trade-off between model accuracy and privacy losses incurred by recon struction, tracing and membership attacks. Second, we formulate reconstruction attacks as solving a noisy system of linear equations, and prove that attacks are guaranteed to be defeated if condition (2) is unfulfilled. Third, based on theoretical analysis, a novel Secret Polarization Network (SPN) is proposed to thwart privacy attacks, which pose serious challenges to existing PPDL methods. Extensive experiments showed that model accuracies are improved on average by 5-20% compared with baseline mechanisms, in regimes where data privacy are satisfactorily protected.
68 - Ce Ju , Ruihui Zhao , Jichao Sun 2020
Prevention of stroke with its associated risk factors has been one of the public health priorities worldwide. Emerging artificial intelligence technology is being increasingly adopted to predict stroke. Because of privacy concerns, patient data are s tored in distributed electronic health record (EHR) databases, voluminous clinical datasets, which prevent patient data from being aggregated and restrains AI technology to boost the accuracy of stroke prediction with centralized training data. In this work, our scientists and engineers propose a privacy-preserving scheme to predict the risk of stroke and deploy our federated prediction model on cloud servers. Our system of federated prediction model asynchronously supports any number of client connections and arbitrary local gradient iterations in each communication round. It adopts federated averaging during the model training process, without patient data being taken out of the hospitals during the whole process of model training and forecasting. With the privacy-preserving mechanism, our federated prediction model trains over all the healthcare data from hospitals in a certain city without actual data sharing among them. Therefore, it is not only secure but also more accurate than any single prediction model that trains over the data only from one single hospital. Especially for small hospitals with few confirmed stroke cases, our federated model boosts model performance by 10%~20% in several machine learning metrics. To help stroke experts comprehend the advantage of our prediction system more intuitively, we developed a mobile app that collects the key information of patients statistics and demonstrates performance comparisons between the federated prediction model and the single prediction model during the federated training process.
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limi t the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
208 - Dashan Gao , Ce Ju , Xiguang Wei 2019
Electroencephalography (EEG) classification techniques have been widely studied for human behavior and emotion recognition tasks. But it is still a challenging issue since the data may vary from subject to subject, may change over time for the same s ubject, and maybe heterogeneous. Recent years, increasing privacy-preserving demands poses new challenges to this task. The data heterogeneity, as well as the privacy constraint of the EEG data, is not concerned in previous studies. To fill this gap, in this paper, we propose a heterogeneous federated learning approach to train machine learning models over heterogeneous EEG data, while preserving the data privacy of each party. To verify the effectiveness of our approach, we conduct experiments on a real-world EEG dataset, consisting of heterogeneous data collected from diverse devices. Our approach achieves consistent performance improvement on every task.
91 - Ce Ju 2019
The goal of the inverse reinforcement learning (IRL) problem is to recover the reward functions from expert demonstrations. However, the IRL problem like any ill-posed inverse problem suffers the congenital defect that the policy may be optimal for m any reward functions, and expert demonstrations may be optimal for many policies. In this work, we generalize the IRL problem to a well-posed expectation optimization problem stochastic inverse reinforcement learning (SIRL) to recover the probability distribution over reward functions. We adopt the Monte Carlo expectation-maximization (MCEM) method to estimate the parameter of the probability distribution as the first solution to the SIRL problem. The solution is succinct, robust, and transferable for a learning task and can generate alternative solutions to the IRL problem. Through our formulation, it is possible to observe the intrinsic property for the IRL problem from a global viewpoint, and our approach achieves a considerable performance on the objectworld.
Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and param eters. To do so accurately requires that users have statistical expertise. To lower this barrier to valid, replicable statistical analysis, we introduce Tea, a high-level declarative language and runtime system. In Tea, users express their study design, any parametric assumptions, and their hypotheses. Tea compiles these high-level specifications into a constraint satisfaction problem that determines the set of valid statistical tests, and then executes them to test the hypothesis. We evaluate Tea using a suite of statistical analyses drawn from popular tutorials. We show that Tea generally matches the choices of experts while automatically switching to non-parametric tests when parametric assumptions are not met. We simulate the effect of mistakes made by non-expert users and show that Tea automatically avoids both false negatives and false positives that could be produced by the application of incorrect statistical tests.
98 - Ce Ju , Zheng Wang , Cheng Long 2019
Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surround ing traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا