ترغب بنشر مسار تعليمي؟ اضغط هنا

Many task-oriented dialogue systems use deep reinforcement learning (DRL) to learn policies that respond to the user appropriately and complete the tasks successfully. Training DRL agents with diverse dialogue trajectories prepare them well for rare user requests and unseen situations. One effective diversification method is to let the agent interact with a diverse set of learned user models. However, trajectories created by these artificial user models may contain generation errors, which can quickly propagate into the agents policy. It is thus important to control the quality of the diversification and resist the noise. In this paper, we propose a novel dialogue diversification method for task-oriented dialogue systems trained in simulators. Our method, Intermittent Short Extension Ensemble (I-SEE), constrains the intensity to interact with an ensemble of diverse user models and effectively controls the quality of the diversification. Evaluations on the Multiwoz dataset show that I-SEE successfully boosts the performance of several state-of-the-art DRL dialogue agents.
Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a corr elated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 {mu}m) to the telecom (1.55 {mu}m) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.
262 - Linfeng Ai , Enze Zhang , Ce Huang 2021
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. Owing to the remanent magnetic moment of the barrier, the critical current and the corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Through the control of this hysteresis, we can effectively trace the magnetic properties of atomic Cr2Ge2Te6 in response to the external magnetic field. Also, we observe a central minimum of critical current in some thick JJ devices, evidencing the coexistence of 0 and {pi} phase coupling in the junction region. Our study paves the way to exploring the sensitive probes of weak magnetism and multifunctional building blocks for phase-related superconducting circuits with the use of vdW heterostructures.
203 - Ce Huang , Enze Zhang , Yong Zhang 2020
The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorde r influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we discover the tunable universality class of superconductor-metal transition by changing the disorder strength in $beta$-W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of $t_{c perp 1}sim 8 nm$ and then from multiple quantum criticality to single criticality at $t_{cperp 2}sim 16 nm$. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at $t_{c parallel }sim 8 nm$. The discovery of tunable universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.
425 - Lawrence Huang 2020
We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Lyman-alpha forest. We train a Neural Network using redshift z=3 outputs from cosmological hydrodynamic simulations and mock datasets constru cted from them. We evaluate how well the trained network is able to reconstruct the optical depth for Lyman-alpha forest absorption from noisy and often saturated transmitted flux data. The Neural Network outperforms an alternative reconstruction method involving log inversion and spline interpolation by approximately a factor of 2 in the optical depth root mean square error. We find no significant dependence in the improvement on input data signal to noise, although the gain is greatest in high optical depth regions. The Lyman-alpha forest optical depth studied here serves as a simple, one dimensional, example but the use of Deep Learning and simulations to approach the inverse problem in cosmology could be extended to other physical quantities and higher dimensional data.
97 - Yaolong Zhang , Ce Hu , 2020
Machine learning methods have nowadays become easy-to-use tools for constructing high-dimensional interatomic potentials with ab initio accuracy. Although machine learned interatomic potentials are generally orders of magnitude faster than first-prin ciples calculations, they remain much slower than classical force fields, at the price of using more complex structural descriptors. To bridge this efficiency gap, we propose an embedded atom neural network approach with simple piecewise switching function based descriptors, resulting in a favorable linear scaling with the number of neighbor atoms. Numerical examples validate that this piecewise machine learning model can be over an order of magnitude faster than various popular machine learned potentials with comparable accuracy for both metallic and covalent materials, approaching the speed of the fastest embedded atom method (i.e. several {mu}s/atom per CPU core). The extreme efficiency of this approach promises its potential in first-principles atomistic simulations of very large systems and/or in long timescale.
Interactive Information Retrieval (IIR) and Reinforcement Learning (RL) share many commonalities, including an agent who learns while interacts, a long-term and complex goal, and an algorithm that explores and adapts. To successfully apply RL methods to IIR, one challenge is to obtain sufficient relevance labels to train the RL agents, which are infamously known as sample inefficient. However, in a text corpus annotated for a given query, it is not the relevant documents but the irrelevant documents that predominate. This would cause very unbalanced training experiences for the agent and prevent it from learning any policy that is effective. Our paper addresses this issue by using domain randomization to synthesize more relevant documents for the training. Our experimental results on the Text REtrieval Conference (TREC) Dynamic Domain (DD) 2017 Track show that the proposed method is able to boost an RL agents learning effectiveness by 22% in dealing with unseen situations.
64 - Song Li , Jyh-Pin Chou , Alice Hu 2020
We study the effect of strain on the physical properties of the nitrogen antisite-vacancy pair in hexagonal boron nitride ($h$-BN), a color center that may be employed as a quantum bit in a two-dimensional material. With group theory and ab-initio an alysis we show that strong electron-phonon coupling plays a key role in the optical activation of this color center. We find a giant shift on the zero-phonon-line (ZPL) emission of the nitrogen antisite-vacancy pair defect upon applying strain that is typical of $h$-BN samples. Our results provide a plausible explanation for the experimental observation of quantum emitters with similar optical properties but widely scattered ZPL wavelengths and the experimentally observed dependence of the ZPL on the strain.
A core interest in building Artificial Intelligence (AI) agents is to let them interact with and assist humans. One example is Dynamic Search (DS), which models the process that a human works with a search engine agent to accomplish a complex and goa l-oriented task. Early DS agents using Reinforcement Learning (RL) have only achieved limited success for (1) their lack of direct control over which documents to return and (2) the difficulty to recover from wrong search trajectories. In this paper, we present a novel corpus-level end-to-end exploration (CE3) method to address these issues. In our method, an entire text corpus is compressed into a global low-dimensional representation, which enables the agent to gain access to the full state and action spaces, including the under-explored areas. We also propose a new form of retrieval function, whose linear approximation allows end-to-end manipulation of documents. Experiments on the Text REtrieval Conference (TREC) Dynamic Domain (DD) Track show that CE3 outperforms the state-of-the-art DS systems.
This article presents the emerging topic of dynamic search (DS). To position dynamic search in a larger research landscape, the article discusses in detail its relationship to related research topics and disciplines. The article reviews approaches to modeling dynamics during information seeking, with an emphasis on Reinforcement Learning (RL)-enabled methods. Details are given for how different approaches are used to model interactions among the human user, the search system, and the environment. The paper ends with a review of evaluations of dynamic search systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا