ترغب بنشر مسار تعليمي؟ اضغط هنا

We are concerned with polynomial ordinary differential systems that arise from modelling chemical reaction networks. For such systems, which may be of high dimension and may depend on many parameters, it is frequently of interest to obtain a reductio n of dimension in certain parameter ranges. Singular perturbation theory, as initiated by Tikhonov and Fenichel, provides a path toward such reductions. In the present paper we discuss parameter values that lead to singular perturbation reductions (so-called Tikhonov-Fenichel parameter values, or TFPVs). An algorithmic approach is known, but it is feasible for small dimensions only. Here we characterize conditions for classes of reaction networks for which TFPVs arise by turning off reactions (by setting rate parameters to zero), or by removing certain species (which relates to the classical quasi-steady state approach to model reduction). In particular, we obtain definitive results for the class of complex balanced reaction networks (of deficiency zero) and first order reaction networks.
103 - Carsten Wiuf , Chuang Xu 2021
Deterministic reaction networks (RNs) are tools to model diverse biological phenomena characterized by particle systems, when there are abundant number of particles. Examples include but are not limited to biochemistry, molecular biology, genetics, e pidemiology, and social sciences. In this chapter we propose a new type of decomposition of RNs, called fiber decomposition. Using this decomposition, we establish lifting of mass-action RNs preserving stationary properties, including multistationarity and absolute concentration robustness. Such lifting scheme is simple and explicit which imposes little restriction on the reaction networks. We provide examples to illustrate how this lifting can be used to construct RNs preserving certain dynamical properties.
305 - Carsten Wiuf , Chuang Xu 2020
Stochastic reaction networks (SRNs) provide models of many real-world networks. Examples include networks in epidemiology, pharmacology, genetics, ecology, chemistry, and social sciences. Here, we model stochastic reaction networks by continuous time Markov chains (CTMCs) and derive new results on the decomposition of the ambient space $mathbb{N}^d_0$ (with $dge 1$ the number of species) into communicating classes. In particular, we propose to study (minimal) core networks of an SRN, and show that these characterize the decomposition of the ambient space. Special attention is given to one-dimensional mass-action SRNs (1-d stoichiometric subspace). In terms of (up to) four parameters, we provide sharp checkable criteria for various dynamical properties (including explosivity, recurrence, ergodicity, and the tail asymptotics of stationary or quasi-stationary distributions) of SRNs in the sense of their underlying CTMCs. As a result, we prove that all 1-d endotactic networks are non-explosive, and positive recurrent with an ergodic stationary distribution with Conley-Maxwell-Poisson (CMP)-like tail, provided they are essential. In particular, we prove the recently proposed positive recurrence conjecture in one dimension: Weakly reversible mass-action SRNs with 1-d stoichiometric subspaces are positive recurrent. The proofs of the main results rely on our recent work on CTMCs with polynomial transition rate functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا