ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we study the Kepler problem in the non commutative Snyder scenario. We characterize the deformations in the Poisson bracket algebra under a mimic procedure from quantum standard formulations and taking into account a general recipe to b uild the noncommutative phase space coordinates (in the sense of Poisson brackets). We obtain an expression to the deformed potential, and then the consequences in the precession of the orbit of Mercury are calculated. This result allows us to find an estimated value for the non commutative deformation parameter introduced.
In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semi-classical ef fects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non radial motion of a test particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا