ﻻ يوجد ملخص باللغة العربية
In this paper we study the Kepler problem in the non commutative Snyder scenario. We characterize the deformations in the Poisson bracket algebra under a mimic procedure from quantum standard formulations and taking into account a general recipe to build the noncommutative phase space coordinates (in the sense of Poisson brackets). We obtain an expression to the deformed potential, and then the consequences in the precession of the orbit of Mercury are calculated. This result allows us to find an estimated value for the non commutative deformation parameter introduced.
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In
We show that the Kepler problem is projectively equivalent to null geodesic motion on the conformal compactification of Minkowski-4 space. This space realises the conformal triality of Minkwoski, dS and AdS spaces.
Despite the ultraviolet problems with canonical quantum gravity, as an effective field theory its infrared phenomena should enjoy fully quantum mechanical unitary time evolution. Currently this is not possible, the impediment being what is known as t
The electromagnetic self-force equation of motion is known to be afflicted by the so-called runaway problem. A similar problem arises in the semiclassical Einsteins field equation and plagues the self-consistent semiclassical evolution of spacetime.
We discuss the particle horizon problem in the framework of spatially homogeneous and isotropic scalar cosmologies. To this purpose we consider a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime with possibly non-zero spatial sectional curvature