ترغب بنشر مسار تعليمي؟ اضغط هنا

193 - Cao H. Nam 2021
Studying the color superconductivity (CSC) phase is important to understand the physics in the core of the neutron stars which is the only known context where the gravitational force squeezes the matter to the sufficiently high density and hence the CSC phase might appear. We propose a simple holographic dual description of the CSC phase transition in the realistic Yang-Mills theory with a power-law Maxwell field. We find the CSC phase transition with the large color number in the deconfinement phase, which is not found in the case of the usual Maxwell field, if the power parameter characterizing for the power-law Maxwell field is sufficiently lower than one but above $1/2$ and the chemical potential is above a critical value. However, the power parameter is not arbitrary below one because when this parameter is sufficiently far away from one it leads to the occurrence of the CSC state in the confinement phase which is not compatible with a nonzero vacuum expectation value of the color nonsinglet operator.
We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the viable parameter regimes constrained from the observed relic density and direct detection experiments.
We show that the canonical seesaw mechanism implemented by the $U(1)_{B-L}$ gauge symmetry provides two-component dark matter naturally. The seesaw scale that breaks $B-L$ defines a residual gauge symmetry to be $Z_6=Z_2otimes Z_3$, where $Z_2$ leads to the usual matter parity, while $Z_3$ is newly recognized, transforming quark fields nontrivially. The dark matter components -- that transform nontrivially under the matter parity and $Z_3$, respectively -- can gain arbitrary masses, despite the fact that the $Z_3$ dark matter may be heavier than the light quarks $u,d$. This dark matter setup can address the XENON1T anomaly recently observed and other observables, given that the dark matter masses are nearly degenerate, heavier than the electron and the $B-L$ gauge boson $Z$, as well as the fast-moving $Z_3$ dark matter has a large $B-L$ charge, while the $Z$ is viably below the beam dump experiment sensitive regime.
It is shown that for a higher weak isospin symmetry, $SU(P)_L$ with $Pgeq 3$, the baryon minus lepton charge $B-L$ neither commutes nor closes algebraically with $SU(P)_L$ similar to the electric charge $Q$, which all lead to a $SU(3)_Cotimes SU(P)_L otimes U(1)_Xotimes U(1)_N$ gauge completion, where $X$ and $N$ determine $Q$ and $B-L$, respectively. As a direct result, the neutrinos obtain appropriate masses via a canonical seesaw. While the version with $P=3$ supplies the schemes of single-component dark matter well established in the literature, we prove in this work that the models with $Pgeq 4$ provide the novel scenarios of multicomponent dark matter, which contain simultaneously at least $P-2$ stable candidates, respectively. In this setup, the multicomponet dark matter is nontrivially unified with normal matter by gauge multiplets, and their stability is ensured by a residual gauge symmetry which is a remnant of the gauge symmetry after spontaneous symmetry breaking. The thr
We reconsider the question of electric charge quantization, which leads to the existence of a dark charge nontrivially unified with weak isospin in a novel gauge symmetry, $SU(3)_Cotimes SU(2)_Lotimes U(1)_Yotimes U(1)_N$, where $Y$ and $N$ determine the electric and dark charges, respectively. The new model provides neutrino masses and dark matter appropriately, a direct consequence of the dark dynamics. We diagonalize the fermion, scalar, and gauge sectors as well as obtain relevant interactions, taking into account the kinetic mixing of $U(1)_{Y,N}$ gauge bosons. The new physics signals at colliders are examined. The dark matter observables are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا