ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter-wave (mmW)/Terahertz (THz) wideband communication employing a large-scale antenna array is a promising technique of the sixth-generation (6G) wireless network for realizing massive machine-type communications (mMTC). To reduce the access l atency and the signaling overhead, we design a grant-free random access scheme based on joint active device detection and channel estimation (JADCE) for mmW/THz wideband massive access. In particular, by exploiting the simultaneously sparse and low-rank structure of mmW/THz channels with spreads in the delay-angular domain, we propose two multi-rank aware JADCE algorithms via applying the quotient geometry of product of complex rank-$L$ matrices with the number of clusters $L$. It is proved that the proposed algorithms require a smaller number of measurements than the currently known bounds on measurements of conventional simultaneously sparse and low-rank recovery algorithms. Statistical analysis also shows that the proposed algorithms can linearly converge to the ground truth with low computational complexity. Finally, extensive simulation results confirm the superiority of the proposed algorithms in terms of the accuracy of both activity detection and channel estimation.
125 - Jiabao Gao , Mu Hu , Caijun Zhong 2021
Channel estimation is one of the key issues in practical massive multiple-input multiple-output (MIMO) systems. Compared with conventional estimation algorithms, deep learning (DL) based ones have exhibited great potential in terms of performance and complexity. In this paper, an attention mechanism, exploiting the channel distribution characteristics, is proposed to improve the estimation accuracy of highly separable channels with narrow angular spread by realizing the divide-and-conquer policy. Specifically, we introduce a novel attention-aided DL channel estimation framework for conventional massive MIMO systems and devise an embedding method to effectively integrate the attention mechanism into the fully connected neural network for the hybrid analog-digital (HAD) architecture. Simulation results show that in both scenarios, the channel estimation performance is significantly improved with the aid of attention at the cost of small complexity overhead. Furthermore, strong robustness under different system and channel parameters can be achieved by the proposed approach, which further strengthens its practical value. We also investigate the distributions of learned attention maps to reveal the role of attention, which endows the proposed approach with a certain degree of interpretability.
82 - Xiaoling Hu , Caijun Zhong , 2021
This paper considers an angle-domain intelligent reflecting surface (IRS) system. We derive maximum likelihood (ML) estimators for the effective angles from the base station (BS) to the user and the effective angles of propagation from the IRS to the user. It is demonstrated that the accuracy of the estimated angles improves with the number of BS antennas. Also, deploying the IRS closer to the BS increases the accuracy of the estimated angle from the IRS to the user. Then, based on the estimated angles, we propose a joint optimization of BS beamforming and IRS beamforming, which achieves similar performance to two benchmark algorithms based on full CSI and the multiple signal classification (MUSIC) method respectively. Simulation results show that the optimized BS beam becomes more focused towards the IRS direction as the number of reflecting elements increases. Furthermore, we derive a closed-form approximation, upper bound and lower bound for the achievable rate. The analytical findings indicate that the achievable rate can be improved by increasing the number of BS antennas or reflecting elements. Specifically, the BS-user link and the BS-IRS-user link can obtain power gains of order $N$ and $NM^2$, respectively, where $N$ is the antenna number and $M$ is the number of reflecting elements.
The reconfigurable intelligent surface (RIS) is considered as a promising new technology for reconfiguring wireless communication environments. To acquire the channel information accurately and efficiently, we only turn on a fraction of all the RIS e lements, formulate a sub-sampled RIS channel, and design a deep learning based scheme to extrapolate the full channel information from the partial one. Specifically, inspired by the ordinary differential equation (ODE), we set up connections between different data layers in a convolutional neural network (CNN) and improve its structure. Simulation results are provided to demonstrate that our proposed ODE-based CNN structure can achieve faster convergence speed and better solution than the cascaded CNN.
In this letter, we consider a multicast system where a single-antenna transmitter sends a common message to multiple single-antenna users, aided by an intelligent reflecting surface (IRS) equipped with $N$ passive reflecting elements. Prior works on IRS have mostly assumed the availability of channel state information (CSI) for designing its passive beamforming. However, the acquisition of CSI requires substantial training overhead that increases with $N$. In contrast, we propose in this letter a novel emph{random passive beamforming} scheme, where the IRS performs independent random reflection for $Qgeq 1$ times in each channel coherence interval without the need of CSI acquisition. For the proposed scheme, we first derive a closed-form approximation of the outage probability, based on which the optimal $Q$ with best outage performance can be efficiently obtained. Then, for the purpose of comparison, we derive a lower bound of the outage probability with traditional CSI-based passive beamforming. Numerical results show that a small $Q$ is preferred in the high-outage regime (or with high rate target) and the optimal $Q$ becomes larger as the outage probability decreases (or as the rate target decreases). Moreover, the proposed scheme significantly outperforms the CSI-based passive beamforming scheme with training overhead taken into consideration when $N$ and/or the number of users are large, thus offering a promising CSI-free alternative to existing CSI-based schemes.
In this letter, an intelligent reflecting surface (IRS) enhanced full-duplex MIMO two-way communication system is studied. The system sum rate is maximized through jointly optimizing the source precoders and the IRS phase shift matrix. Adopting the i dea of Arimoto-Blahut algorithm, the non-convex optimization problem is decoupled into three sub-problems, which are solved alternatingly. All the sub-problems can be solved efficiently with closed-form solutions. In addition, practical IRS assumptions, e.g., discrete phase shift levels, are also considered. Numerical results verify the convergence and performance of the proposed scheme.
This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable perf ormance as the exhaustive beam searching method but with much lower time overhead. Then, a closed-form expression for the achievable multicast rate is presented, which is valid for arbitrary system configurations. In addition, for certain asymptotic scenario, simple approximated expressions for the multicase rate are derived. Closed-form solutions are obtained for the optimal power allocation scheme, and it is shown that equal power allocation is optimal when the pilot power or the number of reflecting elements is sufficiently large. However, it is desirable to allocate more power to weaker users when there are a large number of RF chains. The analytical findings indicate that, with large pilot power, the multicast rate is determined by the weakest user. Also, increasing the number of radio frequency (RF) chains or reflecting elements can significantly improve the multicast rate, and as the phase shift number becomes larger, the multicast rate improves first and gradually converges to a limit. Moreover, increasing the number of users would significantly degrade the multicast rate, but this rate loss can be compensated by implementing a large number of reflecting elements.
Millimeter-wave/Terahertz (mmW/THz) communications have shown great potential for wideband massive access in next-generation cellular internet of things (IoT) networks. To decrease the length of pilot sequences and the computational complexity in wid eband massive access, this paper proposes a novel joint activity detection and channel estimation (JADCE) algorithm. Specifically, after formulating JADCE as a problem of recovering a simultaneously sparse-group and low rank matrix according to the characteristics of mmW/THz channel, we prove that jointly imposing $l_1$ norm and low rank on such a matrix can achieve a robust recovery under sufficient conditions, and verify that the number of measurements derived for the mmW/THz wideband massive access system is significantly smaller than currently known measurements bound derived for the conventional simultaneously sparse and low-rank recovery. Furthermore, we propose a multi-rank aware method by exploiting the quotient geometry of product of complex rank-$L$ matrices with the number of scattering clusters $L$. Theoretical analysis and simulation results confirm the superiority of the proposed algorithm in terms of computational complexity, detection error rate, and channel estimation accuracy.
In existing communication systems, the channel state information of each UE (user equipment) should be repeatedly estimated when it moves to a new position or another UE takes its place. The underlying ambient information, including the specific layo ut of potential reflectors, which provides more detailed information about all UEs channel structures, has not been fully explored and exploited. In this paper, we rethink the mmWave channel estimation problem in a new and indirect way, i.e., instead of estimating the resultant composite channel response at each time and for any specific location, we first conduct the ambient perception exploiting the fascinating radar capability of a mmWave antenna array and then accomplish the location-based sparse channel reconstruction. In this way, the sparse channel for a quasi-static UE arriving at a specific location can be rapidly synthesized based on the perceived ambient information, thus greatly reducing the signalling overhead and online computational complexity. Based on the reconstructed mmWave channel, single-beam mmWave communication is designed and evaluated which shows excellent performance. Such an approach in fact integrates radar with communication, which may possibly open a new paradigm for future communication system design.
Multi-antenna non-orthogonal multiple access (NOMA) is a promising technique to significantly improve the spectral efficiency and support massive access, which has received considerable interests from academic and industry. This article first briefly introduces the basic idea of conventional multi-antenna NOMA technique, and then discusses the key limitations, namely, the high complexity of successive interference cancellation(SIC) and the lack of fairness between the user with a strong channel gain and the user with a weak channel gain. To address these problems, this article proposes a novel spatial modulation (SM) assisted multi-antenna NOMA technique, which avoids the use of SIC and is able to completely cancel intra-cluster interference. Furthermore, simulation results are provided to validate the effectiveness of the proposed novel technique compared to the conventional multi-antenna NOMA. Finally, this article points out the key challenges and sheds light on the future research directions of the SM assisted multi-antenna NOMA technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا