ترغب بنشر مسار تعليمي؟ اضغط هنا

Utilizing the full CLEO-c data sample of 818 pb$^{-1}$ of $e^+e^-$ data taken at the $psi(3770)$ resonance, we update our measurements of absolute hadronic branching fractions of charged and neutral $D$ mesons. We previously reportedresults from subs ets of these data. Using a double tag technique we obtain branching fractions for three $D^0$ and six $D^+$ modes, including the reference branching fractions $mathcal{B} (D^0to K^-pi^+)=(3.934 pm 0.021 pm 0.061)%$ and $mathcal{B} (D^+ to K^- pi^+pi^+)=(9.224 pm 0.059 pm 0.157)%$. The uncertainties are statistical and systematic, respectively. In these measurements we include the effects of final-state radiation by allowing for additional unobserved photons in the final state, and the systematic errors include our estimates of the uncertainties of these effects. Furthermore, using an independent measurement of the luminosity, we obtain the cross sections $sigma(e^+e^-to D^0overline{D}{}^0)=(3.607pm 0.017 pm 0.056) mathrm{nb}$ and $sigma(e^+e^-to D^+D^-)=(2.882pm 0.018 pm 0.042) mathrm{nb}$ at a center of mass energy, $E_mathrm{cm} = 3774 pm 1$ MeV.
The branching fractions of Ds meson decays serve to normalize many measurements of processes involving charm quarks. Using 586 pb^-1 of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for 13 Ds decays in 16 reconstructed final states with a double tag technique. In particular we make a precise measurement of the branching fraction B(Ds -> K- K+ pi+) = (5.55 +- 0.14 +- 0.13)%, where the uncertainties are statistical and systematic respectively. We find a significantly reduced value of B(Ds -> pi+ pi0 eta) compared to the world average, and our results bring the inclusively and exclusively measured values of B(Ds -> eta X)$ into agreement. We also search for CP-violating asymmetries in Ds decays and measure the cross-section of e+ e- -> Ds* Ds at Ecm = 4.17 GeV.
We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV, to give an updated measurement of cosdelta and a first determination of sindelta, where de lta is the relative strong phase between doubly Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay amplitudes. With no inputs from other experiments, we find cosdelta = 0.81 +0.22+0.07 -0.18-0.05, sindelta = -0.01 +- 0.41 +- 0.04, and |delta| = 10 +28+13 -53-0 degrees. By including external measurements of mixing parameters, we find alternative values of cosdelta = 1.15 +0.19+0.00 -0.17-0.08, sindelta = 0.56 +0.32+0.21 -0.31-0.20, and delta = (18 +11-17) degrees. Our results can be used to improve the world average uncertainty on the mixing parameter y by approximately 10%.
The first measurements of the coherence factor R_{K_S^0Kpi} and the average strong--phase difference delta^{K_S^0Kpi} in D^0 to K_S^0 K^mppi^pm decays are reported. These parameters can be used to improve the determination of the unitary triangle ang le gamma in B^- rightarrow $widetilde{D}K^-$ decays, where $widetilde{D}$ is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the psi(3770) resonance. The measured values are R_{K_S^0Kpi} = 0.70 pm 0.08 and delta^{K_S^0Kpi} = (0.1 pm 15.7)$^circ$ for an unrestricted kinematic region and R_{K*K} = 0.94 pm 0.12 and delta^{K*K} = (-16.6 pm 18.4)$^circ$ for a region where the combined K_S^0 pi^pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^pm resonance. The branching ratio {B}(D^0 rightarrow K_S^0K^+pi^-)/{B}(D^0 rightarrow K_S^0K^-pi^+) is determined to be 0.592 pm 0.044 (stat.) pm 0.018 (syst.), which is more precise than previous measurements.
Using the entire CLEO-c psi(3770) to DDbar event sample, corresponding to an integrated luminosity of 818 pb^-1 and approximately 5.4 x 10^6 DDbar events, we measure the form factors for the decays D0 to rho- e+ nu_e and D+ to rho0 e+ nu_e for the fi rst time and the branching fractions with improved precision. A four-dimensional unbinned maximum likelihood fit determines the form factor ratios to be: V(0)/A_1(0) = 1.48 +- 0.15 +- 0.05 and A_2(0)/A_1(0)= 0.83 +- 0.11 +- 0.04. Assuming CKM unitarity, the known D meson lifetimes and our measured branching fractions we obtain the form factor normalizations A_1(0), A_2(0), and V(0). We also present a measurement of the branching fraction for D^+ to omega e^+ nu_e with improved precision.
Using a data sample of 2.59 x 10^7 psi(2S) decays obtained with the CLEO-c detector, we perform amplitude analyses of the complementary decay chains chi_c1 -> eta pi+ pi- and chi_c1 -> eta pi+ pi-. We find evidence for a P-wave eta pi scattering ampl itude, which, if interpreted as a resonance, would have exotic J^PC = 1^-+ and parameters consistent with the pi_1(1600) state reported in other production mechanisms. We also make the first observation of the decay a_0(980) -> eta pi and measure the ratio of branching fractions B(a_0(980) -> eta pi)/B(a_0(980) -> eta pi) = 0.064 +- 0.014 +- 0.014. The pi pi spectrum produced with a recoiling eta is compared to that with eta recoil.
Using e^+e^- collision data corresponding to 5.88M Y(3S) [25.9M psi(2S)] decays and acquired by the CLEO III [CLEO-c] detectors operating at CESR, we study the single-pion transitions from Y(3S) [psi(2S)] to the respective spin-singlet states h_{b[c] }. Utilizing only the momentum of suitably selected transition-pi^0 candidates, we obtain the upper limit B(Y(3S) -> pi^0 h_b) < 1.2times 10^{-3} at 90% confidence level, and measure B(psi(2S) -> pi^0 h_c) = (9.0+-1.5+-1.3)times 10^{-4}. Signal sensitivities are enhanced by excluding very asymmetric pi^0 -> gamma gamma candidates.
We present the results of a Dalitz plot analysis of D^0 to K^0_S pi^0 pi^0 using the CLEO-c data set of 818 inverse pico-barns of e^+ e^- collisions accumulated at sqrt{s} = 3.77 GeV. This corresponds to three million D^0 D^0-bar pairs from which we select 1,259 tagged candidates with a background of 7.5 +- 0.9 percent. Several models have been explored, all of which include the K^*(892), K^*_2(1430), K^*(1680), the f_0(980), and the sigma(500). We find that the combined pi^0 pi^0 S-wave contribution to our preferred fit is (28.9 +- 6.3 +- 3.1)% of the total decay rate while D^0 to K^*(892)^0 pi^0 contributes (65.6 +- 5.3 +- 2.5)%. Using three tag modes and correcting for quantum correlations we measure the D^0 to K^0_S pi^0 pi^0 branching fraction to be (1.059 +- 0.038 +- 0.061)%.
We present the first search for the decay $D^+_{s}to omega e^{+} u$ to test the four-quark content of the $D^+_{s}$ and the $omega$-$phi$ mixing model for this decay. We use 586 $mathrm{pb}^{-1}$ of $e^{+}e^{-}$ collision data collected at a center-o f-mass energy of 4170 MeV. We find no evidence of a signal, and set an upper limit on the branching fraction of $mathcal{B}(D^+_{s}toomega e^+ u)<$0.20% at the 90% confidence level.
We report on a study of exclusive radiative decays of the Upsilon(1S) resonance into a final state consisting of a photon and two K0s candidates. We find evidence for a signal for Upsilon(1S)->gamma f_2(1525); f_2(1525)->K0sK0s, at a rate (4.0+/-1.3+ /-0.6)x10^{-5}, consistent with previous observations of Upsilon(1S)->gamma f_2(1525); f_2(1525)->K+K-, and isospin. Combining this branching fraction with existing branching fraction measurements of Upsilon(1S)->gamma f_2(1525) and J/psi->gamma f_2(1525), we obtain the ratio of branching fractions: B(Upsilon(1S)->gamma f_2(1525))/B(J/psi->gamma f_2(1525))=0.09+/-0.02, approximately consistent with expectations based on soft collinear effective theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا