ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana zero-modes in a superconductor are midgap states localized in the core of a vortex or bound to the end of a nanowire. They are anyons with non-Abelian braiding statistics, but when they are immobile one cannot demonstrate this by exchanging them in real space and indirect methods are needed. As a real-space alternative, we propose to use the chiral motion along the boundary of the superconductor to braid a mobile vortex in the edge channel with an immobile vortex in the bulk. The measurement scheme is fully electrical and deterministic: edge vortices ($pi$-phase domain walls) are created on demand by a voltage pulse at a Josephson junction and the braiding with a Majorana zero-mode in the bulk is detected by the charge produced upon their fusion at a second Josephson junction.
Topological states of matter are a source of low-energy quasiparticles, bound to a defect or propagating along the surface. In a superconductor these are Majorana fermions, described by a real rather than a complex wave function. The absence of compl ex phase factors promises protection against decoherence in quantum computations based on topological superconductivity. This is a tutorial style introduction written for a Nature Physics focus issue on topological matter.
A recent mean-field approach to the fractional quantum Hall effect (QHE) is reviewed, with a special emphasis on the application to single-electron tunneling through a quantum dot in a high magnetic field. The theory is based on the adiabatic princip le of Greiter and Wilczek, which maps an incompressible state in the integer QHE on the fractional QHE. The single-particle contribution to the addition spectrum is analyzed, for a quantum dot with a parabolic confining potential. The spectrum is shown to be related to the Fock-Darwin spectrum in the integer QHE, upon substitution of the electron charge by the fractional quasiparticle charge. Implications for the periodicity of the Aharonov-Bohm oscillations in the conductance are discussed.
We calculate the beating of $h/2e$ and $h/e$ periodic oscillations of the flux-dependent critical supercurrent $I_c(Phi)$ through a quantum spin-Hall insulator between two superconducting electrodes. A conducting pathway along the superconductor conn ects the helical edge channels via a non-helical channel, allowing an electron incident on the superconductor along one edge to be Andreev reflected along the opposite edge. In the limit of small Andreev reflection probability the resulting even-odd effect is described by $I_cpropto|cos(ePhi/hbar)+f|$, with $|f|ll 1$ proportional to the probability for phase-coherent inter-edge transmission. Because the sign of $f$ depends on microscopic details, a sample-dependent inversion of the alternation of large and small peaks is a distinctive feature of the beating mechanism for the even-odd effect.
69 - C.W.J. Beenakker 2014
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries (Particle-hole symmetry, Majorana representation, Time-reversal and chiral symmetry) IV. Hamiltonian ensembles (The ten-fold way, Midgap spectral peak, Energy level repulsion) V. Scattering matrix ensembles (Fundamental symmetries, Chaotic scattering, Circular ensembles, Topological quantum numbers) VI. Electrical conduction (Majorana nanowire, Counting Majorana zero-modes, Conductance distribution, Weak antilocalization, Andreev resonances, Shot noise of Majorana edge modes) VII. Thermal conduction (Topological phase transitions, Super-universality, Heat transport by Majorana edge modes, Thermopower and time-delay matrix, Andreev billiard with chiral symmetry) VIII. Josephson junctions (Fermion parity switches, 4{pi}-periodic Josephson effect, Discrete vortices) IX. Conclusion
73 - C.W.J. Beenakker 2013
The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calcula te the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1 +/- cos phi dependence on the phase difference phi of the superconductors from which the excitations originated (with the +/- sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.
The phase-dependent bound states (Andreev levels) of a Josephson junction can cross at the Fermi level, if the superconducting ground state switches between even and odd fermion parity. The level crossing is topologically protected, in the absence of time-reversal and spin-rotation symmetry, irrespective of whether the superconductor itself is topologically trivial or not. We develop a statistical theory of these topological transitions in an N-mode quantum-dot Josephson junction, by associating the Andreev level crossings with the real eigenvalues of a random non-Hermitian matrix. The number of topological transitions in a 2pi phase interval scales as sqrt(N) and their spacing distribution is a hybrid of the Wigner and Poisson distributions of random-matrix theory.
We calculate the probability distribution of the Andreev reflection eigenvalues R_n at the Fermi level in the circular ensemble of random-matrix theory. Without spin-rotation symmetry, the statistics of the electrical conductance G depends on the top ological quantum number Q of the superconductor. We show that this dependence is nonperturbative in the number N of scattering channels, by proving that the p-th cumulant of G is independent of Q for p<N/d (with d=2 or d=1 in the presence or in the absence of time-reversal symmetry). A large-N effect such as weak localization cannot, therefore, probe the topological quantum number. For small N we calculate the full distribution P(G) of the conductance and find qualitative differences in the topologically trivial and nontrivial phases.
The voltage probe model is a model of incoherent scattering in quantum transport. Here we use this model to study the effect of spin-flip scattering on electrical conduction through a quantum dot with chaotic dynamics. The spin decay rate gamma is qu antified by the correlation of spin-up and spin-down current fluctuations (spin-flip noise). The resulting decoherence reduces the ability of the quantum dot to produce spin-entangled electron-hole pairs. For gamma greater than a critical value gamma_c, the entanglement production rate vanishes identically. The statistical distribution P(gamma_c) of the critical decay rate in an ensemble of chaotic quantum dots is calculated using the methods of random-matrix theory. For small gamma_c this distribution is proportional to gamma_c^(-1+beta/2), depending on the presence (beta=1) or absence (beta=2) of time-reversal symmetry. To make contact with experimental observables, we derive a one-to-one relationship between the entanglement production rate and the spin-resolved shot noise, under the assumption that the density matrix is isotropic in the spin degrees of freedom. Unlike the Bell inequality, this relationship holds for both pure and mixed states. In the tunneling regime, the electron-hole pairs are entangled if and only if the correlator of parallel spin currents is at least twice larger than the correlator of antiparallel spin currents.
As an alternative to Buttikers dephasing lead model, we examine a dephasing stub. Both models are phenomenological ways to introduce decoherence in chaotic scattering by a quantum dot. The difference is that the dephasing lead opens up the quantum do t by connecting it to an electron reservoir, while the dephasing stub is closed at one end. Voltage fluctuations in the stub take over the dephasing role from the reservoir. Because the quantum dot with dephasing lead is an open system, only expectation values of the current can be forced to vanish at low frequencies, while the outcome of an individual measurement is not so constrained. The quantum dot with dephasing stub, in contrast, remains a closed system with a vanishing low-frequency current at each and every measurement. This difference is a crucial one in the context of quantum algorithms, which are based on the outcome of individual measurements rather than on expectation values. We demonstrate that the dephasing stub model has a parameter range in which the voltage fluctuations are sufficiently strong to suppress quantum interference effects, while still being sufficiently weak that classical current fluctuations can be neglected relative to the nonequilibrium shot noise.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا